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Abstract

Cardiovascular disease (CVD) is the number one killer in the USA, yet it is largely preventable (World Health Organization
2011). To prevent CVD, carotid intima-media thickness (CIMT) imaging, a noninvasive ultrasonography method, has proven
to be clinically valuable in identifying at-risk persons before adverse events. Researchers are developing systems to automate
CIMT video interpretation based on deep learning, but such efforts are impeded by the lack of large annotated CIMT video
datasets. CIMT video annotation is not only tedious, laborious, and time consuming, but also demanding of costly, specialty-
oriented knowledge and skills, which are not easily accessible. To dramatically reduce the cost of CIMT video annotation,
this paper makes three main contributions. Our first contribution is a new concept, called Annotation Unit (AU), which
simplifies the entire CIMT video annotation process down to six simple mouse clicks. Our second contribution is a new
algorithm, called AFT (active fine-tuning), which naturally integrates active learning and transfer learning (fine-tuning) into
a single framework. AFT starts directly with a pre-trained convolutional neural network (CNN), focuses on selecting the most
informative and representative AUs from the unannotated pool for annotation, and then fine-tunes the CNN by incorporating
newly annotated AUs in each iteration to enhance the CNN’s performance gradually. Our third contribution is a systematic
evaluation, which shows that, in comparison with the state-of-the-art method (Tajbakhsh et al., IEEE Trans Med Imaging
35(5):1299-1312, 2016), our method can cut the annotation cost by >81% relative to their training from scratch and >50%
relative to their random selection. This performance is attributed to the several advantages derived from the advanced active,
continuous learning capability of our AFT method.
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in the USA: every 40 s, one American dies of CVD; nearly
one-half of these deaths occur suddenly and one-third of
them occur in patients younger than 65 years, but CVD is
preventable [1]. To prevent CVD, the key is to identify at-
risk persons, so that scientifically proven and efficacious
preventive care can be prescribed appropriately. Carotid
intima-media thickness (CIMT) imaging, a noninvasive
ultrasonography method, has proven to be -clinically
valuable for predicting individual CVD risk [8, 22, 31]. It
quantifies subclinical atherosclerosis, adds predictive value
to traditional risk factors (e.g., the Framingham Risk Score),
and has several advantages over computed tomography
(CT) coronary artery calcium score: safer (no radiation
exposure), more sensitive in a young population, and
more accessible to the primary care setting. However, the
CIMT imaging protocol (see the “CIMT Imaging Protocol”
section) requires to acquire four videos for each subject,
and interpretation of each CIMT video involves three
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Fig. 1 End-diastolic ultrasound frame (EUF), showing a longitudinal
view of a common carotid artery in an ultrasound B-scan image. EUFs
are selected based on the cardiac cycle indicator, a black line, which
indicates to where in the cardiac cycle the current frame corresponds.
CIMT is the distance between the lumen-intima interface (in green)
and the media-adventitia interface (in red) at an EUF, and it is deter-
mined in a region of interest (ROI) approximately 1 cm distal from the
carotid bulb at the EUF. In a CIMT exam, the sonographer examines
the common carotid arteries on both sides of the neck from the two
angles, yielding 4 CIMT ultrasound videos for each subject. Interpret-
ing each CIMT video involves three manual steps: (1) select 3 EUFs in

manual steps (illustrated Fig. 1), which are not only tedious
and laborious but also subjective to large interoperator
variability if guidelines are not properly followed, hindering
the widespread utilization of CIMT in clinical practice.
Therefore, it is highly desirable to have a system that can
automate the CIMT video interpretation.

The tedious and laborious manual operations also mean
significant work in expert annotation when developing such
systems based on machine learning. This paper is not to
develop such a system but rather to present a new idea: how
to minimize the cost of expert annotation for building such
systems that can automate CIMT video interpretation based
on deep learning. In this research, we make the following
three contributions:

Our first contribution is a new concept, called Annotation
Unit (AU), which naturally groups the objects to be
annotated into sets, and all the objects in each set can
be conveniently labeled once with as few operations as
possible. This concept significantly simplifies the entire
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each video based on the cardiac cycle indicator; (2) localize an ROI in
each selected EUF according to the carotid bulb; (3) trace the lumen-
intima and the media-adventitia interfaces within the localized ROI
and compute the minimum, maximum, and average of the distance
between the traced lumen-intima and the media-adventitia interfaces.
The final CIMT report of a subject is a statistical summary of all CIMT
measurements on the 12 (4x3) EUFs from the 4 CIMT videos acquired
for the subject. This figure is used with permission [28] under IEEE
license number 4407260599014

CIMT video annotation process down to six mouse clicks as
detailed in the “Annotation Units” section and illustrated in
Fig. 2. Our second contribution is a new algorithm, called
AFT (active fine-tuning), which naturally integrates active
learning and transfer learning into a single framework (see
Algorithm 1) to focus on selecting the most informative
and representative AUSs for annotation, thereby dramatically
reducing the cost of annotation in CIMT. AFT starts
directly with a pre-trained CNN to seek “worthy” samples
from the unannotated pool for annotation, and then fine-
tunes the CNN by incorporating newly annotated samples
in each iteration to enhance the CNN’s performance
gradually. Compared with conventional active learning,
AFT offers four advantages: (1) it starts with a completely
empty labeled dataset, requiring no initial seed-labeled
training samples; (2) it incrementally improves the learner
through fine-tuning rather than repeatedly re-training; (3)
it can automatically handle multiple classes; and (4) it is
applicable to many biomedical image analysis tasks [37],
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Fig.2 We simplify the annotation process for each CIMT video down
to six mouse clicks. As illustrated, the annotation of EUF selection is
made at the video level with three mouse clicks on the three R waves
of an ECG signal, while for ROI localization, the annotation is made at
the frame level with one mouse click at the center of the ROL. Manually
tracing the lumen-intima interface or the media-adventitia interface

including detection, classification, and segmentation. Our
third contribution is a systematic evaluation of our proposed
method, which demonstrates that, with AFT, the cost
of annotation for CIMT can be cut by at least half in
comparison with FT (fine-tuning with random selection)
and by >81% relative to their training from scratch
as detailed in the “Experiments” section. This result
is significant for enhancing the system performance for
automating CIMT video interpretation [28, 34]. Given the
current performance of our system [28], it is very difficult
to improve its performance by randomly annotating new
CIMT videos. We must focus on annotating the most
informative and representative videos; otherwise, we will
have to annotate many new videos but gain very little in
boosting its performance.

CIMT Imaging Protocol

The CIMT exams utilized in our research were performed
with B-Mode ultrasound using an 8-14-MHz linear array
transducer utilizing fundamental frequency only (Acuson
SequoiaTM, Mountain View, CA, USA). The -carotid
screening protocol begins with scanning bilateral carotid
arteries in a transverse manner from the proximal aspect
to the proximal internal and external carotid arteries. The
probe is then turned to obtain the longitudinal view of
the distal common carotid artery (Fig. 1). The sonographer

is tedious and laborious. To reduce workload, we eliminate the trac-
ing by two mouse clicks on the lumen-intima and media-adventitia
interfaces between two vertical dashed lines, only when requested by
our proposed AFT algorithm (see the “Annotation Units” section for
details)

optimizes the 2D images of the lumen-intima and media-
adventitia interfaces at the level of the common carotid
artery by adjusting overall gain, time gain, compensation,
and focus position. Once the parameters are optimized,
the sonographer captures two CIMT videos focused on
the common carotid artery from two optimal angles of
incidence, and ensures that each CIMT video covers at least
three cardiac cycles. The same procedure is repeated for the
other side of the neck, resulting in a total of four CIMT
videos for each subject.

CIMT stands for carotid intima-media thickness, but
in the literature, it may refer to the imaging method,
the ultrasonography examination, or the examination
results. For clarify, we define some terms used in this
paper. By CIMT imaging, we refer to the noninvasive
ultrasonography examination procedure described above,
yielding four CIMT videos for each subject. The CIMT
video interpretation is a process to analyze all four
CIMT videos acquired for a subject and produce a
CIMT report, which includes a statistical summary of all
CIMT measurements performed on the three end-diastolic
ultrasound frames (EUFs) selected from each of the four
CIMT videos acquired for the subject. EUFs are selected
based on the cardiac cycle indicator as shown in Fig. 1,
and there are 12 (= 4 x 3) EUFs for each subject. A
CIMT measurement on an EUF includes the minimum,
maximum, and average of the distance between the lumen-
intima and the media-adventitia interfaces (see Fig. 1),

@ Springer



J Digit Imaging

thereby requiring the tracing of lumen-intima and the
media-adventitia interfaces. The interpretation of each
CIMT video involves three manual steps: (1) select three
EUFs in each video based on the cardiac cycle indicator;
(2) localize an ROI in each selected EUF according to
the carotid bulb; and (3) trace the lumen-intima and the
media-adventitia interfaces within the localized ROI and
compute the minimum, maximum, and average of the
distance between the traced lumen-intima and the media-
adventitia interfaces. Certainly, we may adopt the full CIMT
interpretation process to annotate CIMT videos as required
by machine learning algorithms. However, to dramatically
reduce the annotation efforts, we will introduce a separate
CIMT video annotation process in conjunction with our
proposed AFT algorithm.

Related Work

Carotid Intima-Media Thickness Video
Interpretation

As discussed in the “CIMT Imaging Protocol” section, to
measure CIMT, the lumen-intima and the media-adventitia
interfaces must be traced first. Naturally, the -earlier
approaches are focused on analyzing the intensity profile
and distribution, computing the gradient, or combining var-
ious edge properties through dynamic programming [19].
Recent approaches [5, 20] are mostly based on active con-
tours (a.k.a snakes) or their variations [15]. Most recently,
researchers are fucusing on developing algorithms based on
machine learning for CIMT video interpretation. For exam-
ple, Menchon-Lara et al. employed a committee of standard
multi-layer perceptron in [24] and a single standard multi-
layer perceptron with an auto-encoder in [25] for CIMT
video interpretation. Shin et al. [28] presented a unified
framework based on convolutional neural networks (CNNSs)
for automating the entire CIMT video interpretation pro-
cess, and Tajbakhsh et al. [34] further demonstrated that
the measurement errors are within the interobserver vari-
ation. However, none of the aforementioned publications
has mentioned the cost of expert annotation in their system
development. To our knowledge, we are among the first to
minimize the cost of annotation by integrating active learn-
ing with the fine-tuning of CNNs for building systems that
automate the CIMT video interpretation.

Transfer Learning for Medical Imaging

Gustavo et al. [3] replaced the fully connected layers
of a pre-trained CNN with a new logistic layer and
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trained only the appended layer with the labeled data
while keeping the rest of the network the same, yielding
promising results for classification of unregistered multi-
view mammogram. In [4], a fine-tuned pre-trained CNN
was applied for localizing standard planes in ultrasound
images. Gao et al. [7] fine-tuned all layers of a pre-
trained CNN for automatic classification of interstitial lung
diseases. In [27], Shin et al. used fine-tuned pre-trained
CNNs to automatically map medical images to document-
level topics, document-level sub-topics, and sentence-level
topics. In [23], fine-tuned pre-trained CNNs were used to
automatically retrieve missing or noisy cardiac acquisition
plane information from magnetic resonance imaging and
predict the five most common cardiac views. Schlegl et
al. [26] explored unsupervised pre-training of CNNs to
inject information from sites or image classes for which no
annotations were available, and showed that such across-
site pre-training improved classification accuracy compared
to random initialization of the model parameters. Several
researchers [9, 12, 33] have demonstrated that fine-tuning
offers better performance and is more robust than training
from scratch, especially in biomedical imaging tasks that
labels are not easily accessible. However, none of these
works involves active selection processes as our AFT
method does, and they all performed one-time fine-tuning,
that is, simply fine-tuned a pre-trained CNN just once with
available training samples.

Integrating Active Learning with Deep Learning

Research in this area is sparse: Wang and Shang [35] may
be the first to incorporate active learning with deep learning,
and based their approach on stacked restricted Boltzmann
machines and stacked auto-encoders. A similar idea was
reported for hyperspectral image classification [17]. Stark et
al. [30] applied active learning to improve the performance
of CNNs for CAPTCHA recognition, while Al Rahhal et
al. [2] exploited deep learning for active electrocardiogram
classification. All these approaches are fundamentally
different from our AFT approach in that in each iteration,
they all repeatedly re-trained the learner from scratch while
we fine-tune pre-trained CNNs, dramatically cutting the
cost of annotation further by combining active learning
with fine-tuning. Yang et al. [36] adopted active learning
into fully convolutional network (FCN) [21] by extracting
representative samples into training dataset but training
a segmentation network requiring accurate object contour
while our ROI localization is only a coarse-labeled location
(a single click around the center of the ROI as shown in
yellow in Fig. 2). Most recently, Zhou et al. [37] integrated
active learning and deep learning based on continuous fine-
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tuning but their method is limited to binary classification
and requires that all patches within each AU share the same
label. Therefore, their method is not applicable to this CIMT
application, which requires three-way classifiers.

The Proposed Method

The aim of this research is not to develop methods for
automating the interpretation process, rather to investigate
how to minimize the cost of expert annotation required
for creating such systems that can automate CIMT video
interpretation based on CNNs.

Annotation Units

We could follow the same process as illustrated in
Fig. 1 [28] to create the ground truth as required to train
CNNs. However, these three steps, and in particular the
CIMT measurement, are not only tedious and laborious
but also subjective to large inter-operator variability if
guidelines are not properly followed. To accelerate the
annotation process, we introduce a new concept, Annotation
Unit (AU), which is defined as a set of objects that the
annotator can associate with multiple labels at a time with
as few operations as possible during the annotation process.
The benefits of AU have two folds. First, the objects to be
annotated are grouped into sets, and each set can be easily
labeled with as few operations as possible. Taking CIMT
measurement annotation as an example, instead of tracing
the entire lumen-intima and media-adventitia interfaces
within an ROI, we define an one-pixel-wide column in the
ROI as an AU, so that all pixels within the column can be
labeled once with two mouse clicks: one on the lumen-
intima interface and one on the media-adventitia interface.
Second, with the aforementioned properties, all the objects
in an AU can be correctly associated with their labels once
after the required operations. Using the CIMT measurement
example again, after the two clicks, the first clicked pixel is
associated with class 1 (lumen-intima), the second clicked
pixel is with class 2 (media-adventitia), and all the rest

pixels are with class O (background). It should be noticed
that when all AUs are labeled, the interpretation quality is
identical or at least similar to the standard process in [28],
but our goal is to annotate as few AUs as possible during the
annotation process; therefore, the annotation process may
not result in a complete interpretation for a subject. In other
words, the annotation process is designed for annotation (as
little as possible) only, and it is not intended for clinical use,
which requires a complete interpretation for each subject.

With the definition of AU, the CIMT video annotation
process can be simplified down to just six mouse clicks as
illustrated in Fig. 2. The annotation for EUF selection is
made at the video level. With three mouse clicks on the
R waves of the ECG signal, three end-diastolic ultrasound
frames (EUFs) are determined and annotated as class 1,
while all the rest frames are automatically labeled as
class 0 (non-EUF). For ROI localization in an EUF, the
annotation is made at the frame level with one mouse
click on the EUF, giving the center of the ROI. Given the
anatomical constraint that ROI should be approximately
1 cm distal from carotid bulb, the latter’s location can
be automatically estimated. For data argumentation and
classification robustness, all pixels within 15 mm from
the selected center are considered as class 1 (ROI), and
those within 15 mm from the estimated bulb location are
as class 2, while all the rest pixels belong to class 0
automatically. For CIMT measurement, it would be too
tedious and laborious for the annotator to manually trace
the lumen-intima and media-adventitia interfaces. To reduce
workload, two vertical dashed lines are drawn to indicate an
AU (see Fig. 2) and the annotator makes two mouse clicks
on the two interfaces between the two dashed lines. The
top pixel and bottom pixel are regarded as the lumen-intima
interface (class 1) and media-adventitia interface (class
2), respectively, while all the rest pixels between the two
lines are considered as background (class 0). The optimal
distance between the two dashed lines can be determined
based on experiments, and we set it at one pixel (0.99
mm) currently. We summarize the objects of AU, annotation
labels, and required operations per AU in each step of CIMT
video annotation process in Table 1.

Table 1 The AU, annotated labels, and required operations per AU in each step of CIMT video annotation process

EUF selection

ROI localization CIMT measurement

AU ECG signal

Labels EUF
Non-EUF

Operations 3 clicks

EUF frame One-pixel-wide column in ROI
ROI Lumen-intima interface
Carotid bulb Lumen-intima interface
Background Background

1 click 2 clicks

@ Springer
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Algorithm 1 Active fine-tuning
Input:
U ={C;}, i €[1,n] {U contains n AUs}
= {x/}, j € [1,m] {C; has m objects}
M: a pre-trained CNN
b: batch size
Output:
L: the labeled AUs
M;: the fine-tuned CNN model at Iteration ¢

1 L« O
2 repeat
3 for each C; € U do
4 pi < P(C;, M;_1) {outputs of M,_; given
Vx; € C;}
5 & <« E(C;) {compute entropy &; for C; using
Eq. 1}
6 end
7 U <~ SU, &) {sort C; € U according to the value
Ofg,' S 5}
8 Q <« QWU', b) {associate labels for the top b AUs
in the sorted U/'}
9 L—LUO; U<«U\Q;ttt+]
10 M; < F(L, M) {fine-tune M with L}

—

1 until classification performance is satisfactory;

Active Fine-Tuning

Mathematically, given a set of AUs, U = {Cy,Ca, ..., Cy},
where n is the number of AUs, and each C; =
{xil,xiz,...,xi’"} is associated with m objects, our AFT
algorithm iteratively selects a subset of AUs for annotation
as illustrated in Algorithm 1. From annotation, each object
(in each selected AU) will be associated with one of
Y number of possible classes. At the beginning, the
labeled dataset £ is empty; we take a pre-trained CNN
from ImageNet [6] (e.g., AlexNet) as initialization of the
network and run it on U to select b number of AUS
for labeling. The newly labeled AUs will be incorporated
into £ to fine-tune the CNN until the performance is
satisfactory. From our experiments, we have found that
continuously fine-tuning the CNN, which has been fine-
tuned in the previous iteration, with enlarged datasets
converges faster than repeatedly fine-tuning the original pre-
trained CNN, but the latter offers better generalization. We
have also found that continuously fine-tuning the CNN with
only newly labeled data demands careful meta-parameter
adjustments. Therefore, in this paper, our AFT fine-tunes
the original pre-trained CNN with the labeled dataset
enlarged with the newly labeled data in each iteration to
achieve better performance. To determine the “worthiness”
of an AU, we use entropy, as intuitively, entropy captures the

@ Springer

classification certainty—higher uncertainty values denote
higher degrees of information. Assuming the prediction of
object xij in C; by the current CNN is pl.j , we define the
entropy of C; as the average information furnished by all
objects xl-j in C; from the unlabeled pool:

1 m Y -
»:—;ZZP log p!™". (1)

j=1k=1

Experiments

In our experiments, we use a fully interpreted (annotated)
database and simulate the active learning process (Algo-
rithm 1) by retrieving labels for the samples selected based
on selection criterion as present in Eq. 1. In this way, our
approach can be validated without “physically” involving
the experts in the loop.

Dataset

Due to space, we focus on the two most important
tasks: ROI localization and CIMT measurement. Our AFT
algorithm is implemented in Caffe [14] based on the pre-
trained AlexNet [16]. In the following, we shall compare
our method AFT (active fine-tuning) with the state-of-the-
art method [33]: FT (fine-tuning with random selection)
and LS (learning from scratch) in each task. We utilize 23
patients from UFL MCAEL CIMT research database [13].
Each patient has four videos (two on each side) [31],
resulting in a total of 92 CIMT videos with 8,021 frames.
Each video covers at least three cardiac cycles and thus a
minimum of three EUFs. We randomly divide the CIMT
videos at patient level into training, validation, and test
datasets (no overlaps). The training dataset contains 44
CIMT videos of 11 patients with a total of 4,070 frames,
the validation dataset contains 4 videos of 1 patient with
386 frames, and the test dataset contains 44 CIMT videos
of 11 patients with 3,565 frames. From the perspective of
active learning, the training dataset is the “unlabeled pool”
for active selection; when an AU is selected, the label of
each object will be provided. The fined-tuned CNN from
each iteration is always evaluated with the test dataset, so
that we can monitor the performance enhancement across
AUs. Please note that we do not need many patients as
we have many CIMT frames for each patient and we can
generate a large number of patches for training deep models
in each experiment. For example, in our ROI localization
experiments, one AU practically provides 1715 labeled
patches (297 as background, 709 as bulb, and 709 as ROI).
Random translation and flipping data augmentation were
applied when training the models.
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Fig.3 ROI localization process (see text for details). The detected ROI, ground truth, and carotid bulb are in yellow, red, and green, respectively.

The ROI is constrained by green circle with a 1-cm radius

ROI Localization

Accurate localization of the ROI is challenging because,
as illustrated by Shin et al. [28] in their figure 1, no
notable differences can be observed in image appearance
among the ROIs on the far wall of the carotid artery. To
overcome this challenge, we use the location of the carotid
bulb as a contextual constraint. We choose this constraint
for two reasons: (1) the carotid bulb appears as a distinct
dark area in the ultrasonographic frame and thus can be
uniquely identified; and (2) according to the consensus
statement of the American Society of Electrocardiography
for Cardiovascular Risk Assessment [31], the ROI should
be placed approximately 1 cm from the carotid bulb on the
far wall of the common carotid artery. The former motivates
the use of the carotid bulb location as a constraint from a
technical point of view, and the latter justifies this constraint
from a clinical standpoint. We incorporate this constraint
by simultaneously localizing both ROI and carotid bulb
and then refine the estimated location of the ROI given the
location of the carotid bulb. As illustrated in Fig. 3, we first
determine the location of the carotid bulb as the centroid
of the largest connected component within the confidence
map for the carotid bulb and then localize the centroid of
constrained ROI area using the following formula:

> pecs M(p) - p-1(p)
lroi = (2)
> pec M(p) - 1(p)

where M denotes the confidence map of being the ROI, C*
is the largest connected component in M that is nearest to
the carotid bulb, and 7 (p) is an indicator function for pixel
p = [px, pyl that is defined as

1, if|lp—Iwpl <lcm
Hp) = { 0, otherwise )
where [y is the centroid of the carotid bulb. Basically, the
indicator function excludes the pixels located farther than
1 cm from the carotid bulb location. This choice of the
distance threshold is motivated by the fact that the ROI is
located within 1 cm to the right of the carotid bulb.

CIMT Measurement

To automatically measure intima-media thickness, the
lumen-intima and media-adventitia interfaces of the carotid
artery must be detected within the ROI. Although the
lumen-intima interface is relatively easy to detect, the
detection of the media-adventitia interface is challenging,
because of the faint image gradients around its boundary.
We formulate this interface segmentation problem as a
three-class classification task with the goal to classify each
pixel within the ROI into thee categories: (1) a pixel
on the lumen-intima interface, (2) a pixel on the media-
adventitia interface, and (3) a background pixel. During
testing, the trained CNN is applied to a given test ROI in a
convolutional manner, generating two confidence maps with
the same size as the ROI. The first confidence map shows
the probability of each pixel being on the lumen-intima
interface; the second confidence map shows the probability
of each pixel being on the media-adventitia interface. A
relatively thick high-probability band is apparent along
each interface, which hinders the accurate measurement of
intima-media thickness. To thin the detected interfaces, we
scan the confidence map column by column, searching for
the rows with the maximum response for each of the two
interfaces. By doing so, we obtain a 1-pixel-thick boundary
with a step-like shape around each interface. To further
refine the boundaries, we use two active contour models
(a.k.a., snakes) [18], one for the lumen-intima interface and
one for the media-adventitia interface. The open snakes are
initialized with the current step-like boundaries and then
deform solely based on the probability maps generated by
the CNN rather than the original image content.

Results and Discussions

To evaluate AFT performance on ROI localization, in each
iteration, we compute two criteria across all test patients: (1)
the average ROI localization error (the Euclidean distance
between the detected ROI and expert-annotated ROI) and
(2) the predicted confidence of each expert-annotated ROL.
Figure 4a shows the average ROI localization error over
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Fig. 4 a The average ROI localization errors of AFT, FT, and LS on
the test patients over 30 AUs. The ROI confidence predicted by AFT b
and FT c, respectively, on the test patients over 30 AUs. The trendlines

30 AUs (automatically generating 51,450 labeled patches)
demonstrating that our AFT dramatically reduces the
labeling cost in comparison with FT and LS. Black dashed
line represents the ROI localization error of LS, where
the CNN was trained with the entire training dataset (132
AUs) without fine-tuning. We should note that at the earlier
stage (less than 12 AUs), FT learns faster and yields better
performance than AFT, a well-known phenomenon in active
learning [10]. However, AFT quickly surpasses FT after a
few times of fine-tuning. With only 24 AUs, AFT can nearly
achieve the performance of LS with 132 AUs; with 15 AUs,
AFT achieves that of FT with 30 annotations. Thereby, the
cost of annotation can be cut by at least half in comparison
with FT and by more than 81% in comparison with LS. To
increase the robustness, the predicted confidence of each
expert-annotated ROI is computed as the average of the
predicted scores of all pixels within 15 pixels from the ROI
center. Figure 4b, c is the box plots of the ROI confidence
across all the test patients. Clearly, the more AUs used from
the training dataset, the higher the ROI confidence with the
test dataset. In terms of mean and standard deviation of ROI
confidence, with just 9 AUs, AFT offers the same confidence

denote active selection (in red) and random selection (in blue), and they
are duplicated with different transparencies for their easy performance
comparison in b and ¢

as FT at 30 AUs. Moreover, ROI confidence from AFT can
quickly converge to 1.0, while even using 30 AUs, FT still
has many outliers.

We evaluate our AFT on CIMT measurement in the
same way as in ROI localization. However, due to
the post-processing with snakes, AFT and FT give the
similar localization errors at the lumen-intima and media-
adventitia interfaces; therefore, we focus on the CIMT
measurement confidence. Figure 5 is the box plot of the
CIMT measurement confidence on the test dataset. AFT
significantly outperforms FT, especially when a limited
number of training samples are used. For example, actively
selecting only 7 AUs can approximate the performance by
randomly selecting 14 AUs. In addition, with only 7 AUs
selected by our AFT algorithm, we can nearly achieve the
accuracy offered by the entire dataset (12,144 AUs).

In our experiments, we adopted the AlexNet architecture
because a pre-trained AlexNet model is available in the
Caffe library and its architecture strikes a nice balance in
depth: it is deep enough that we can investigate the impact of
AFT on the performance of pre-trained CNNSs, and it is also
shallow enough that we can conduct experiments quickly.

Fig.5 The CIMT measurement 1
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Alternatively, deeper architectures, such as VGG [29],
GoogleNet [32], and ResNet [11], could have been used
and have shown relatively high performance for challenging
computer vision tasks. However, the purpose of this work is
not to achieve the highest performance for the CIMT video
interpretation but to answer a critical question: How much
the cost of annotation can be reduced when applying CNNs
for CIMT video interpretation. For this purpose, AlexNet
is a reasonable architectural choice. Nevertheless, we plan
to investigate the performance of AFT on different deep
architectures. Also, our algorithm aims to select the most
informative and representative AUs for annotation with our
proposed six-click strategy. As a result, the process will
not generate full interpretations for all patients, that is, the
six-click strategy is only applicable in the context of our
proposed algorithm for reducing annotation efforts (as little
as possible), and it is not designed and should not be used for
clinical practice, where a complete interpretation is required
for each patient.

Conclusions

We have developed an active fine-tuning method for
CIMT video interpretation. It integrates active learning
and transfer learning, offering two advantages: It starts
with a completely empty labeled dataset, and incrementally
improves the CNN’s performance via fine-tuning by
actively selecting the most informative and representative
samples. To accelerate the CIMT video annotation process,
we introduced a new concept, Annotation Unit, which
simplifies the CIMT video annotation process down to
six mouse clicks. We have demonstrated that the cost of
CIMT video annotation can be cut by at least half. This
performance is attributed to the advanced active fine-tuning
capability of our AFT method. In the future, we plan
to explore possible algorithms in assisting sonographers
to acquire high-quality CIMT videos more quickly and
integrate our AFT algorithm into the process for collecting
the most informative and representative CIMT videos to
enhance our system performance.
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