
THE WILL OF COMPUTER VISION

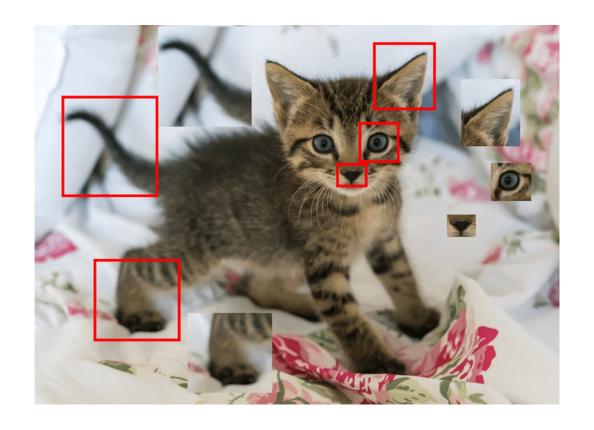
Zongwei Zhou

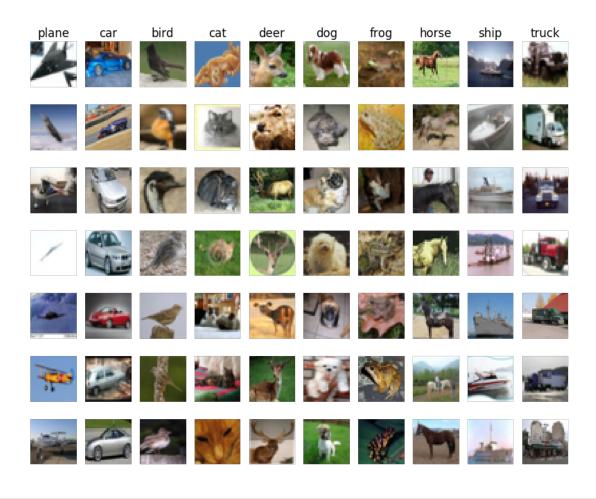
Dept. Biomedical Informatics
Arizona State University

Facial recognition:

Medical imaging:

Self-driving cars:

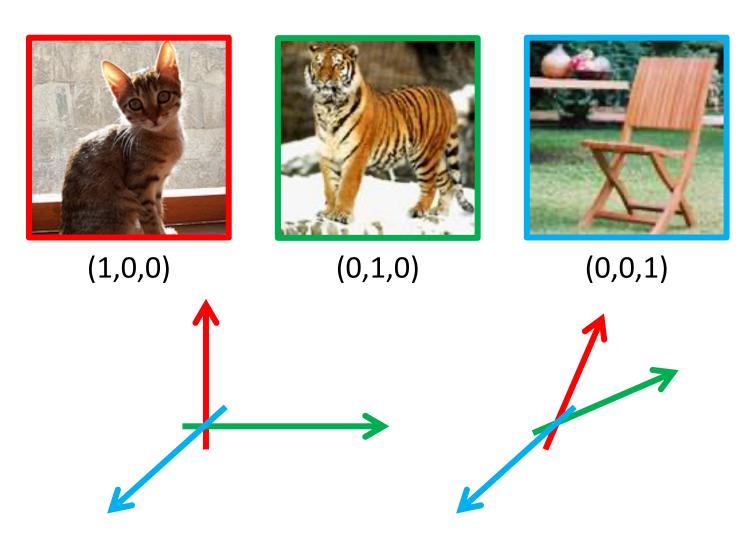

Robotic surgery:


https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/biometrics/facial-recognition https://www.fastcompany.com/90145568/19-artists-draw-their-perfect-self-driving-car https://blogs.nvidia.com/blog/2020/08/12/lunit-insight-cxr/

https://www.cambridgeindependent.co.uk/business/milestone-as-cmr-surgical-s-versius-robot-is-used-by-nhs-hospitals-for-first-time-9100442/

Feature Engineering and Matching

Large-scale Image Categorization

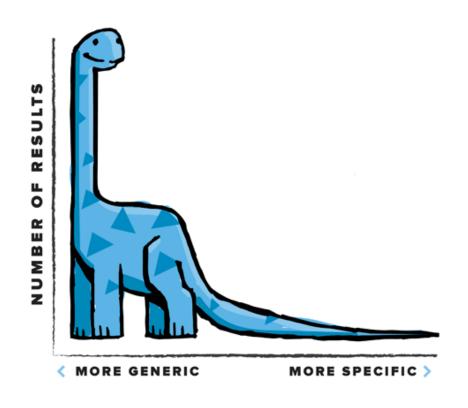

Categorization vs. Contrast

Categories in the real world are

Non-orthogonal

Unbalanced

Exponential

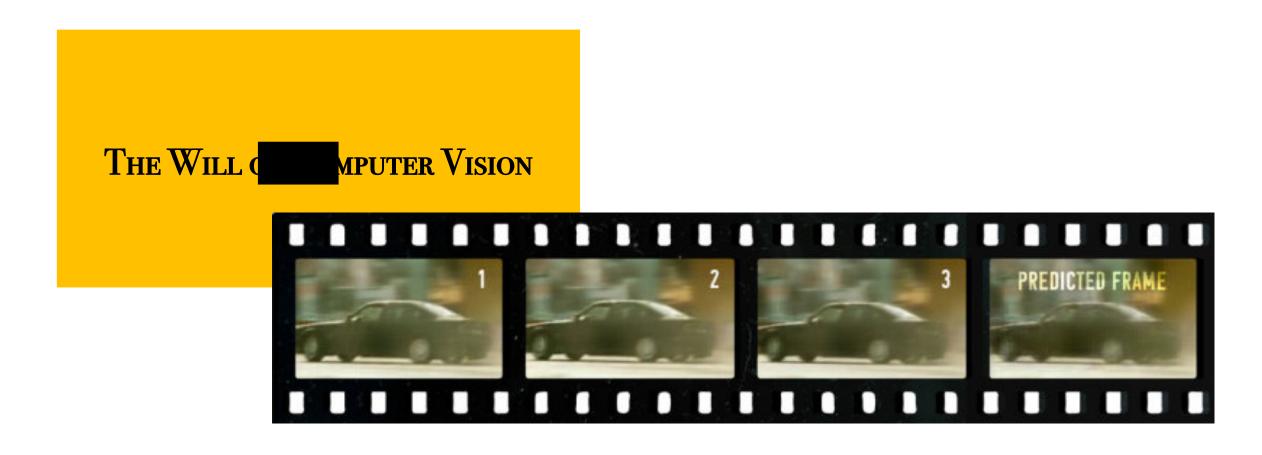

Categorization vs. Contrast

Categories in the real world are

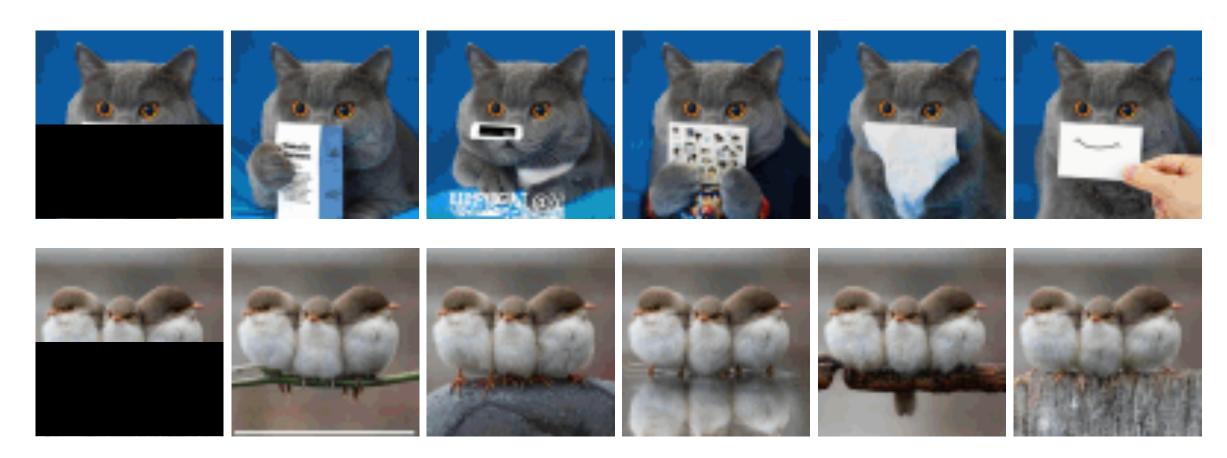
Non-orthogonal

Unbalanced

Exponential


Categorization vs. Contrast

Categories in the real world are Non-orthogonal Unbalanced Exponential


000000000000000 3 **3 3** 3 3 3 3 3 3 3 3 3 3 3 3 666666666666 7 7 **7 7** 7 7 7 7 7 88888888

Large-scale Hidden Context Prediction

Large-scale Hidden Context Prediction

https://openai.com/blog/image-gpt/

Large-scale Multiple View Discrimination

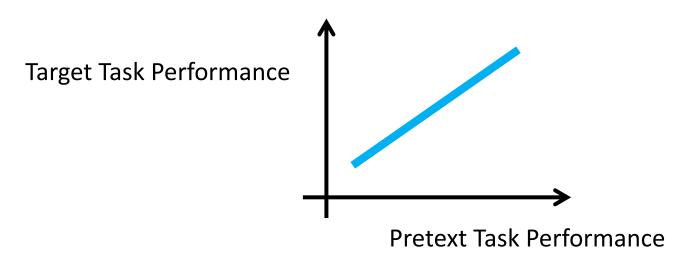
Large-scale Multiple View Discrimination

Feng, R., Zhou, Z., Gotway, M.B. and Liang, J., 2020. Parts2Whole: Self-supervised Contrastive Learning via Reconstruction. In Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning (pp. 85-95). Springer, Cham.

The Will of Computer Vision—Literature

Will: A Novel Pre-training So Many Pre-trainings: A Survey

	ISIC			ChestX		
	5-shot	20-shot	50-shot	5-shot	20-shot	50-shot
InsDis	43.90 ± 0.55	52.19 ± 0.53	55.76 ± 0.50	25.67 ± 0.42	29.13 ± 0.44	31.77 ± 0.44
MoCo-v1	$\textbf{44.42} \pm \textbf{0.55}$	$\textbf{53.79} \pm \textbf{0.54}$	56.81 ± 0.52	25.92 ± 0.45	30.00 ± 0.43	32.74 ± 0.43
PCL-v1	33.21 ± 0.48	38.01 ± 0.44	39.77 ± 0.45	23.33 ± 0.40	25.54 ± 0.43	27.40 ± 0.42
PIRL	43.89 ± 0.54	53.24 ± 0.56	56.89 ± 0.52	25.60 ± 0.41	29.48 ± 0.45	31.44 ± 0.47
PCL-v2	37.47 ± 0.52	44.40 ± 0.52	46.82 ± 0.46	24.87 ± 0.42	28.28 ± 0.42	30.56 ± 0.43
SimCLR-v1	43.99 ± 0.55	53.00 ± 0.54	56.16 ± 0.53	26.36 ± 0.44	30.82 ± 0.43	33.16 ± 0.47
MoCo-v2	42.60 ± 0.55	52.39 ± 0.49	55.68 ± 0.53	25.26 ± 0.44	29.43 ± 0.45	32.20 ± 0.43
SimCLR-v2	43.66 ± 0.58	53.15 ± 0.53	56.83 ± 0.54	26.34 ± 0.44	30.90 ± 0.44	33.23 ± 0.47
SeLa-v2	39.97 ± 0.55	48.43 ± 0.54	51.31 ± 0.52	25.60 ± 0.44	30.43 ± 0.46	32.81 ± 0.44
InfoMin	39.03 ± 0.55	48.21 ± 0.54	51.58 ± 0.51	25.78 ± 0.44	29.48 ± 0.44	31.58 ± 0.44
BYOL	43.09 ± 0.56	53.76 ± 0.55	$\textbf{58.03} \pm \textbf{0.52}$	26.39 ± 0.43	30.71 ± 0.47	$\textbf{34.17} \pm \textbf{0.45}$
DeepCluster-v2	40.73 ± 0.59	49.91 ± 0.53	53.65 ± 0.54	26.51 ± 0.45	$\textbf{31.51} \pm \textbf{0.45}$	$\textbf{34.17} \pm \textbf{0.48}$
SwAV	39.66 ± 0.54	47.08 ± 0.50	51.10 ± 0.50	$\boxed{\textbf{26.54} \pm \textbf{0.48}}$	$\underline{30.91 \pm 0.45}$	33.86 ± 0.46
Supervised	39.38 ± 0.58	48.79 ± 0.53	52.54 ± 0.56	25.22 ± 0.41	29.26 ± 0.44	32.34 ± 0.45


Ericsson, L., Gouk, H. and Hospedales, T.M., 2020. How Well Do Self-Supervised Models Transfer?. arXiv preprint arXiv:2011.13377./

The Will of Computer Vision—Literature

WILL: A Novel Pre-training

So Many Pre-trainings: A Survey

Do Better Will Transfer Better?

Kornblith, S., Shlens, J. and Le, Q.V., 2019. Do better imagenet models transfer better?. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2661-2671).

"Do not Define Anything"

The choice of augmented views

The choice of model architectures

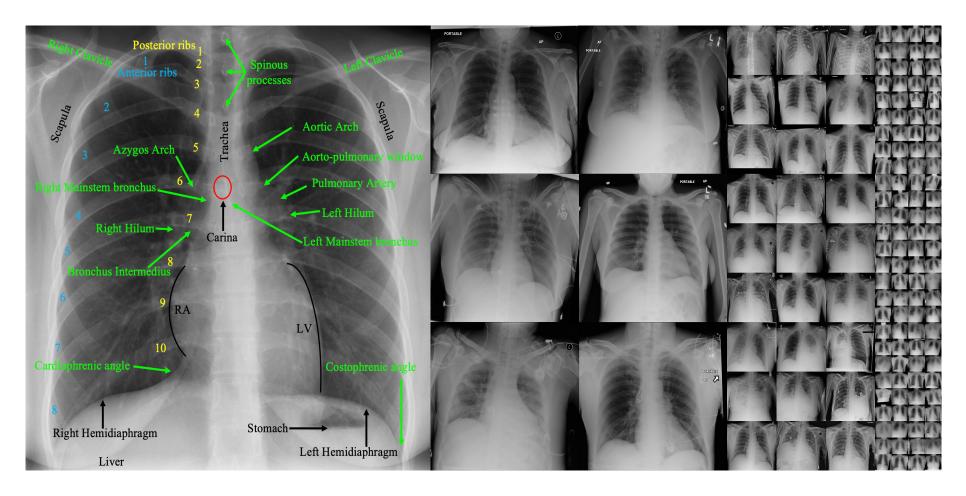
The choice of pretext tasks

THE WILL OF COMPUTER VISION

THE WILL OF COMPUTER VISION

OF COMPUTER THE WILL VISION

VISION OF THE COMPUTER WILL


WILL OF COMPUTER VISION THE

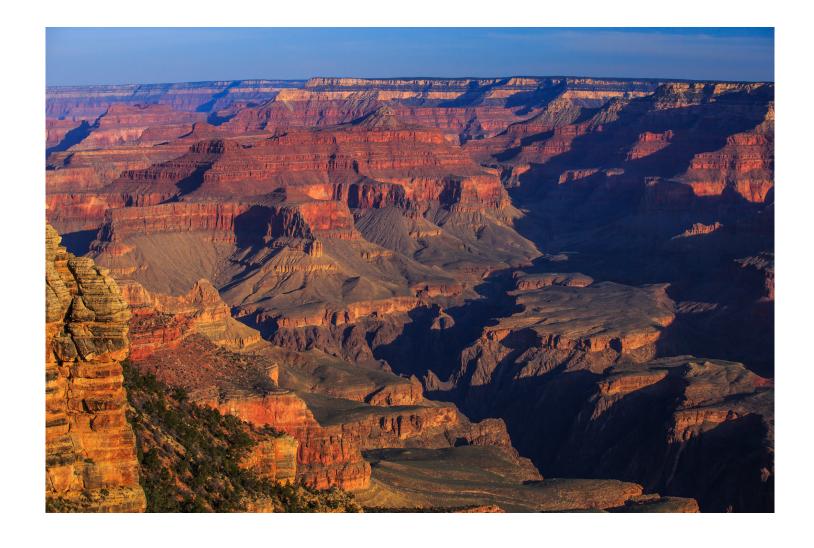
VISION THE COMPUTER WILL OF

THE VISION OF COMPUTER WILL

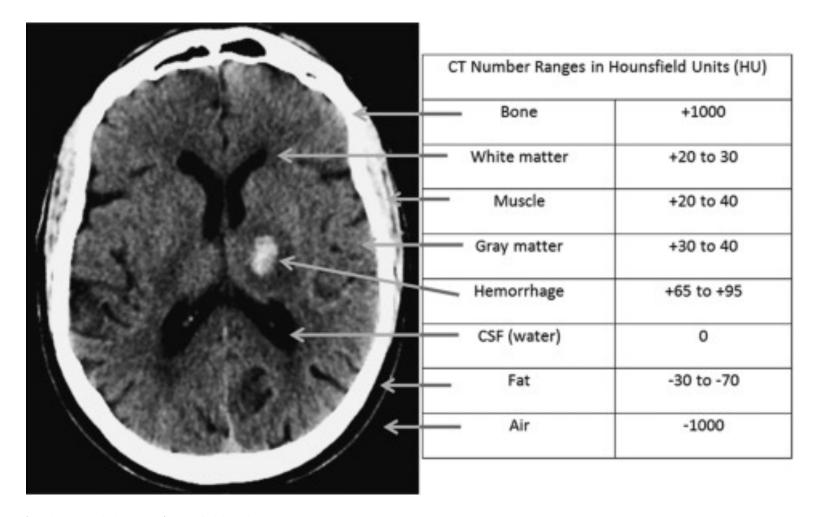
• • • • •

Medical Images Contain Consistent Anatomical Structures

Haghighi, F., Taher, M.R.H., Zhou, Z., Gotway, M.B. and Liang, J., 2020, October. Learning Semantics-enriched Representation via Self-discovery, Self-classification, and Self-restoration. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 137-147). Springer, Cham.


Haghighi, F., Taher, M.R.H., Zhou, Z., Gotway, M.B. and Liang, J., 2021, Transferable Visual Word. IEEE Transactions on Medical Imaging. (coming soon)

Natural Images Sometimes Contain Consistent Structures



https://www.biometricupdate.com/202001/facial-recognition-datasets-and-controversies-drive-biometrics-and-digital-id-news-of-the-week

Images are the Language of the Creator



Medical Images Convey Physical Meaning

https://www.sciencedirect.com/topics/medicine-and-dentistry/hounsfield-scale Zhou, Z., Sodha, V., Pang, J., Gotway, M.B. and Liang, J., 2020. Models genesis. Medical image analysis, 67, p.101840.

Medical Images are High Dimensional

http://henrybetts.co.uk/an-attempt-at-bullet-time/

THE WILL OF COMPUTER VISION

Pretext tasks and objective functions—

- Identifying the descriptive attributes from the image
- Minimizing the error between computer predictions and human labels
- Predicting some hidden portion of the image
- Distinguishing different views of context and instance
- Learning characteristics of special image modality