

Cost-Effective Deep Learning in Medical Image Analysis

Zongwei Zhou

Ph.D. Candidate, Biomedical Informatics College of Health Solutions, Arizona State University P: 1-(480)738-2575 | E: zongweiz@asu.edu

Objective

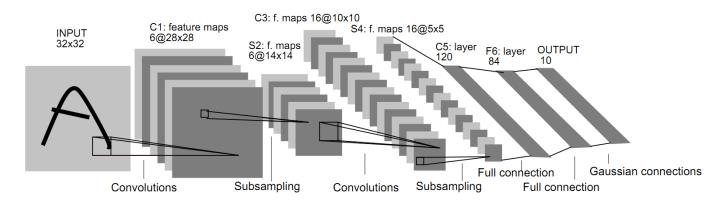
Aim #1

Aim #2

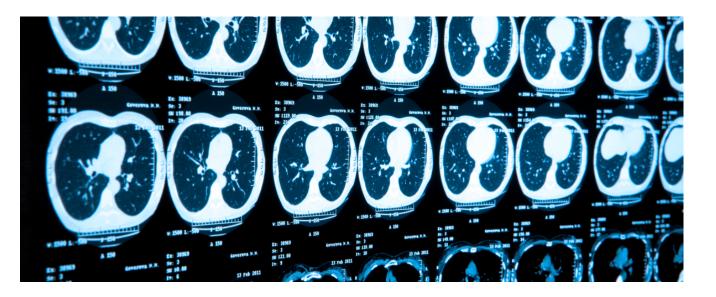
Aim #3

Summary

Deep Learning propels us into the so-called artificial intelligence (AI) era



Imaging data account for about 90% of all healthcare data



- 1. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature 521.7553 (2015): 436-444
- 2. "The Digital Universe Driving Data Growth in Healthcare." published by EMC with research and analysis from IDC (12/13)

Objective

Aim #1

Aim #2

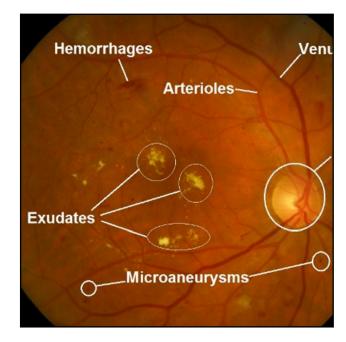
Aim #3

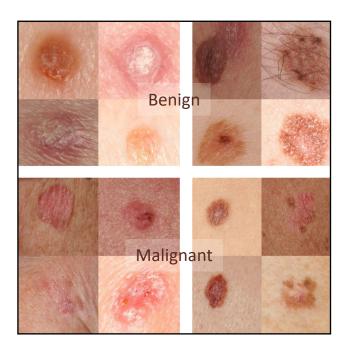
Summary

Deep Learning works well in medical imaging, but it demands massive annotation costs.

To match human diagnostic precision, deep learning algorithms require

- 42,290 radiologist-labeled CT images for lung cancer diagnosis
- 128,175 ophthalmologist-labeled retinal images for diabetic retinopathy detection
- 129,450 dermatologist-labeled images for skin cancer classification





- 1. Ardila, Diego, et al. "End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography." Nature medicine 25.6 (2019): 954-961.
- 2. Gulshan, Varun, et al. "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs." Jama 316.22 (2016): 2402-2410.
- 3. Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks." nature 542.7639 (2017): 115-118.

Objective

Aim #1

Aim #2

Aim #3

Summary

Deep Learning works well in medical imaging, but it demands massive annotation costs.

To match human diagnostic precision, deep learning algorithms require

- 42,290 radiologist-labeled CT images for lung cancer diagnosis¹
- 128,175 ophthalmologist-labeled retinal images for diabetic retinopathy detection²
- 129,450 dermatologist-labeled images for skin cancer classification³

How to develop cost-effective deep learning algorithms for those diseases that have no such labeled big data?

Consider the scenarios as follows:

- A flood of patients are pending during an outbreak
- Doctors do not have time to annotate every case
- Not many doctors have expertise for novel diseases

^{1.} Ardila, Diego, et al. "End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography." Nature medicine 25.6 (2019): 954-961.

^{2.} Gulshan, Varun, et al. "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs." Jama 316.22 (2016): 2402-2410.

^{3.} Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks." nature 542.7639 (2017): 115-118.

Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise computer-aided diagnosis system

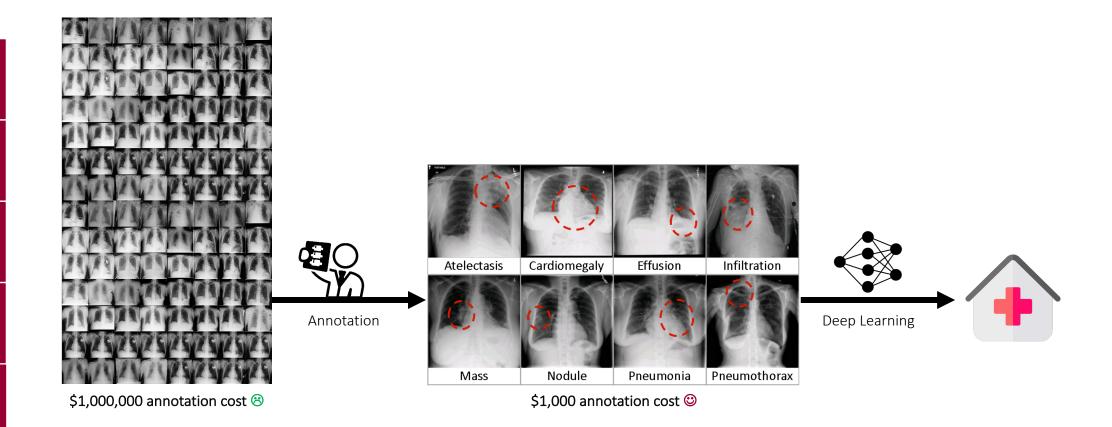
Introduction

Objective

Aim #1

Aim #2

Aim #3



Objective

Aim #1

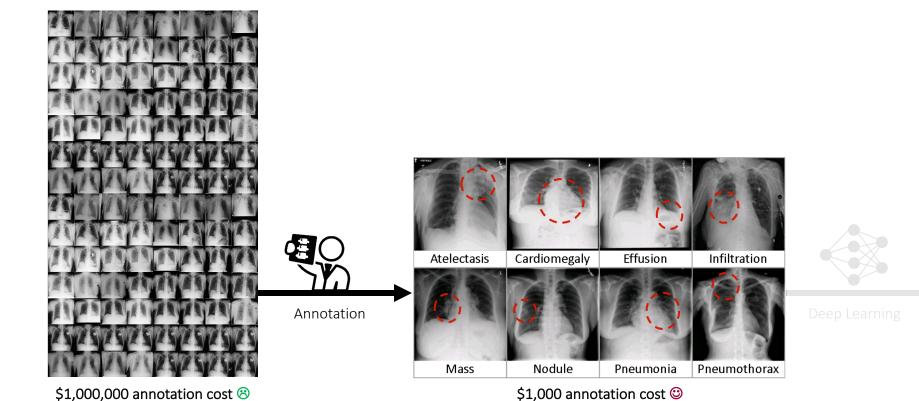
Aim #2

Aim #3

Summary

Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise computer-aided diagnosis system

Aim #1: Select necessary patients/samples for annotation



Objective

Aim #1

Aim #2

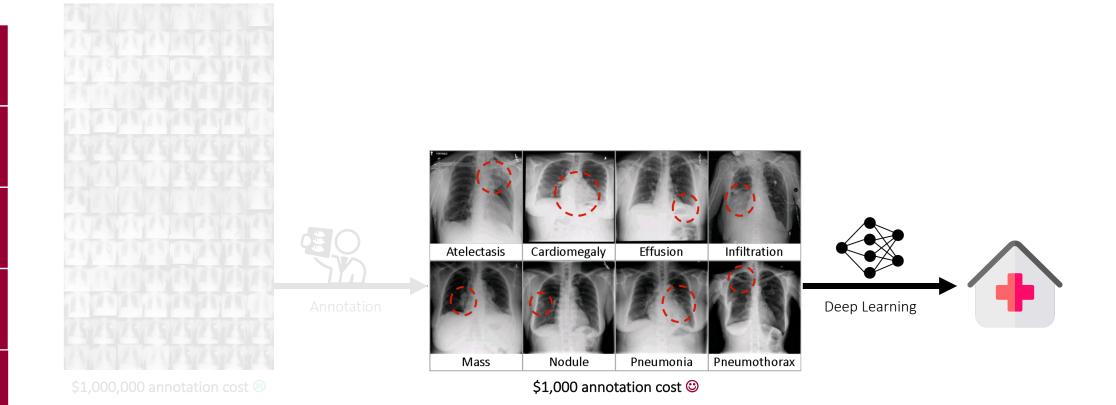
Aim #3

Summary

Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise computer-aided diagnosis system

Aim #1: Select necessary patients/samples for annotation

Aim #2: Develop advanced architectures with existing annotation



Objective

Aim #1

Aim #2

Aim #3

Summary

Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise computer-aided diagnosis system

Aim #1: Select necessary patients/samples for annotation

Aim #2: Develop advanced architectures with existing annotation

Aim #3: Extract generic knowledge directly from unannotated images

Objective

Aim #1

Aim #2

Aim #3

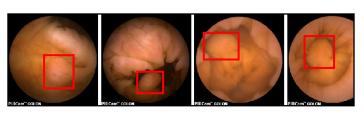
Summary

Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise computer-aided diagnosis system

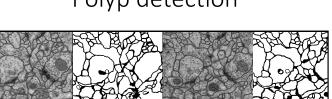
Aim #1: Select necessary patients/samples for annotation

Aim #2: Develop advanced architectures with existing annotation

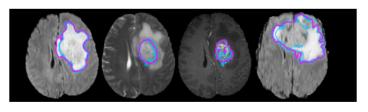
Aim #3: Extract generic knowledge directly from unannotated images



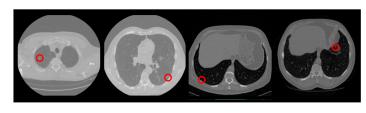
Polyp detection



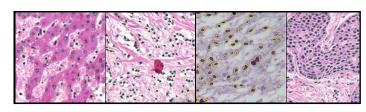
Neuronal structure segmentation



Brain/tumor segmentation

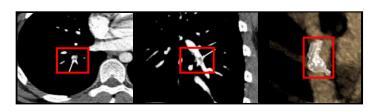


Lung nodule detection

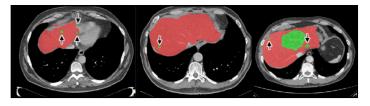


Cell/nuclei segmentation

Kidney/lesion segmentation



Pulmonary embolism detection



Liver/lesion segmentation

Pulmonary diseases classification

Problem: Find the most important 1,000 images from 1,000,000 images

Introduction

Objective

Aim #1

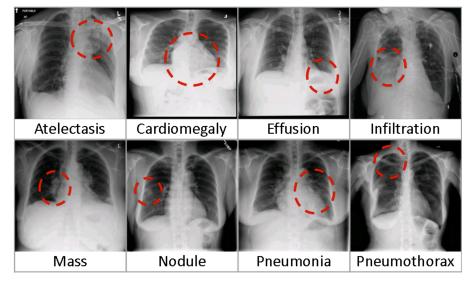
Aim #2

Aim #3

Summary



\$1 per subject



\$ 1,000 annotation budget ©

\$ 1,000,000 annotation cost 🕾

Approach: "Human-in-the-loop" active learning procedure

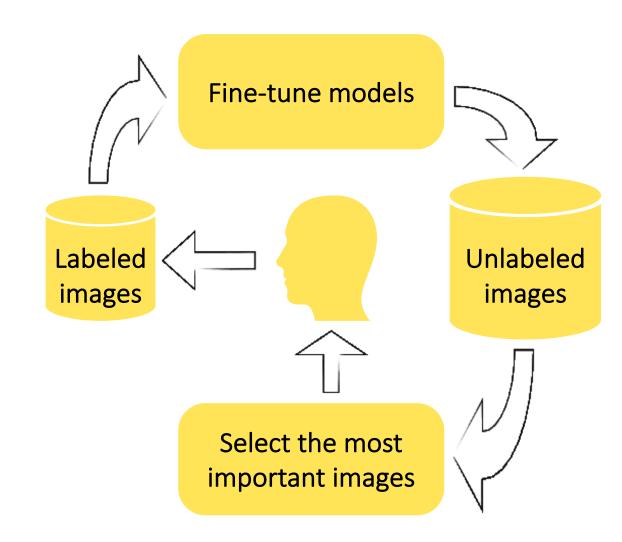
Introduction

Objective

Aim #1

Aim #2

Aim #3



Approach: "Human-in-the-loop" active learning procedure

Introduction

Objective

Aim #1

Aim #2

Aim #3

Summary

Pre-trained models

Approach: "Human-in-the-loop" active learning procedure

Introduction

Objective

Aim #1

Aim #2

Aim #3

Summary

Pre-trained models

Unlabeled images

Approach: "Human-in-the-loop" active learning procedure

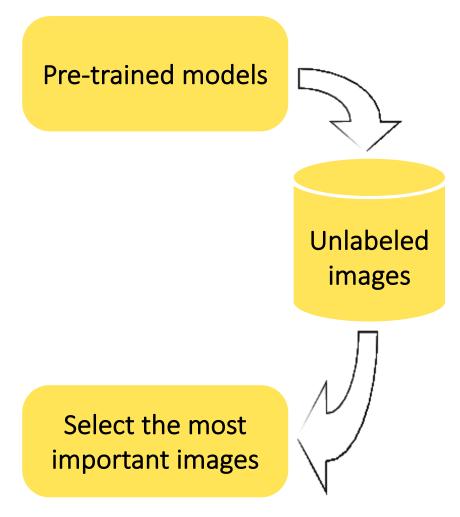
Introduction

Objective

Aim #1

Aim #2

Aim #3



Approach: "Human-in-the-loop" active learning procedure

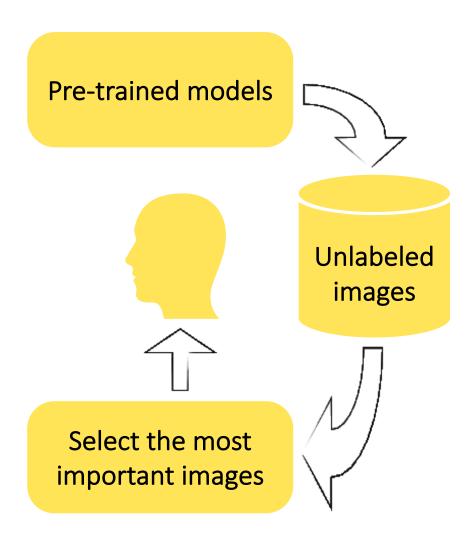
Introduction

Objective

Aim #1

Aim #2

Aim #3



Approach: "Human-in-the-loop" active learning procedure

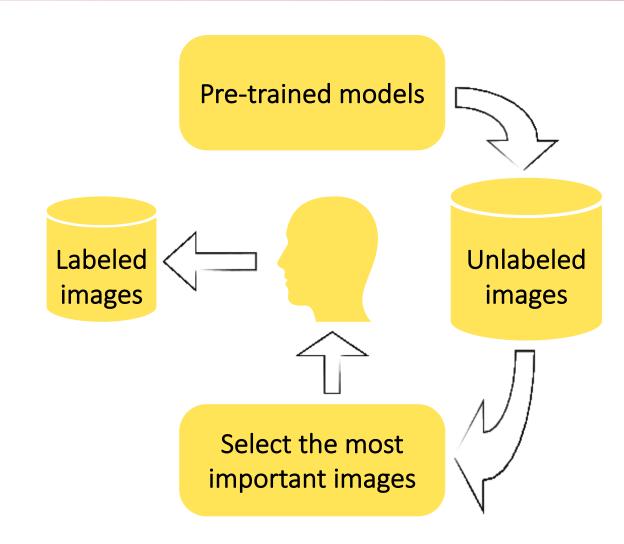
Introduction

Objective

Aim #1

Aim #2

Aim #3



Approach: "Human-in-the-loop" active learning procedure

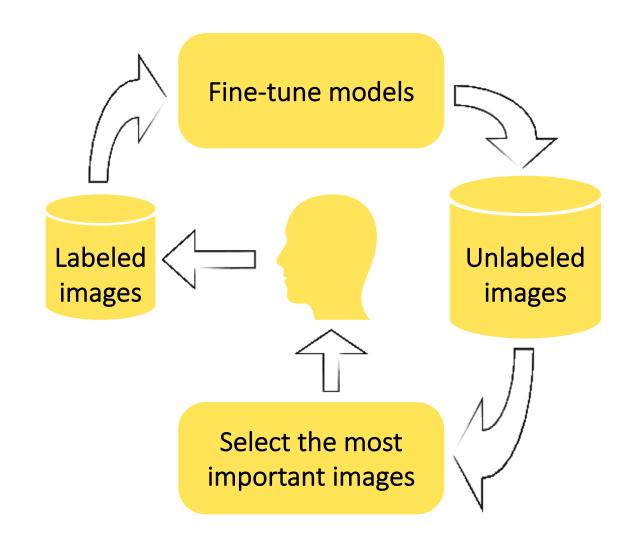
Introduction

Objective

Aim #1

Aim #2

Aim #3



Approach: "Human-in-the-loop" active learning procedure

Introduction

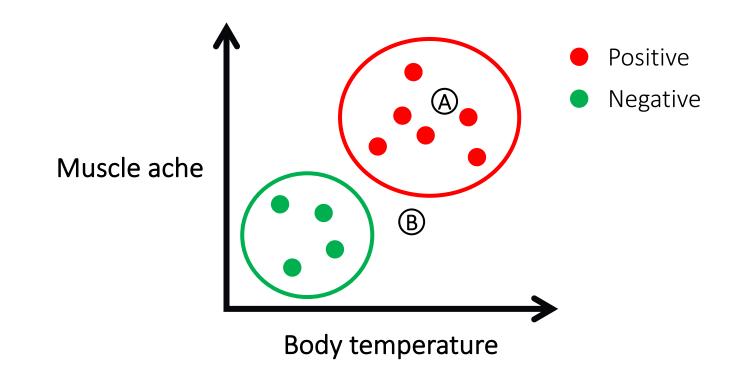
Objective

Aim #1

Aim #2

Aim #3

Summary



Select the most important samples

Approach: "Human-in-the-loop" active learning procedure

Introduction

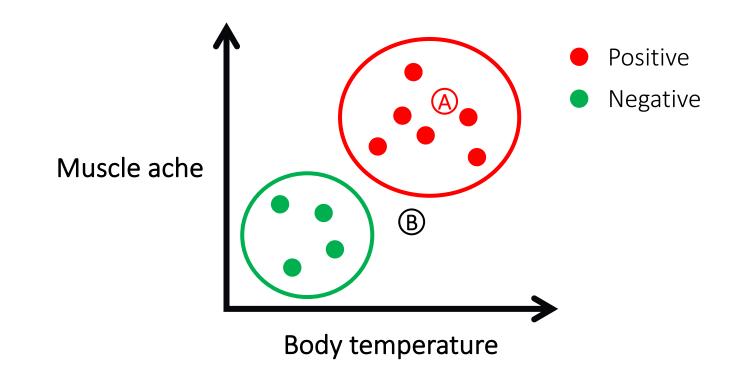
Objective

Aim #1

Aim #2

Aim #3

Summary



Select the most important samples

Approach: "Human-in-the-loop" active learning procedure

Introduction

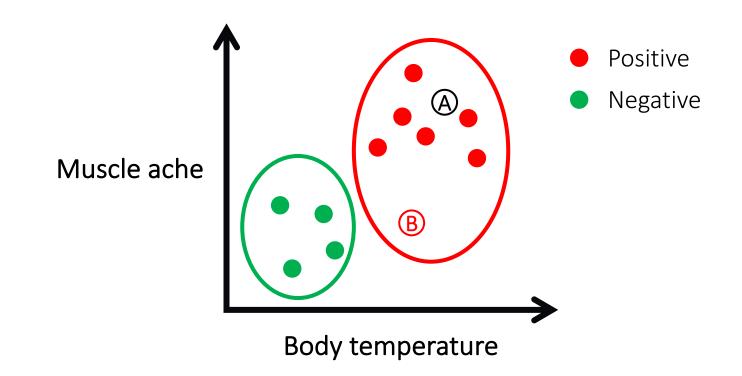
Objective

Aim #1

Aim #2

Aim #3

Summary



Select the most important samples

Approach: "Human-in-the-loop" active learning procedure

Introduction

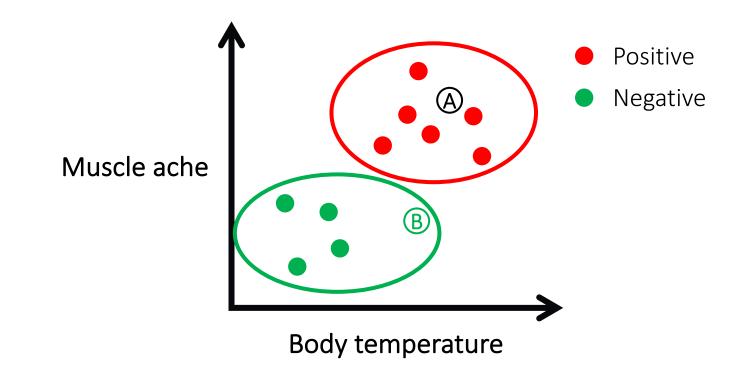
Objective

Aim #1

Aim #2

Aim #3

Summary



Select the most important samples

Hypothesis: Wisely selecting important samples can reduce annotation cost

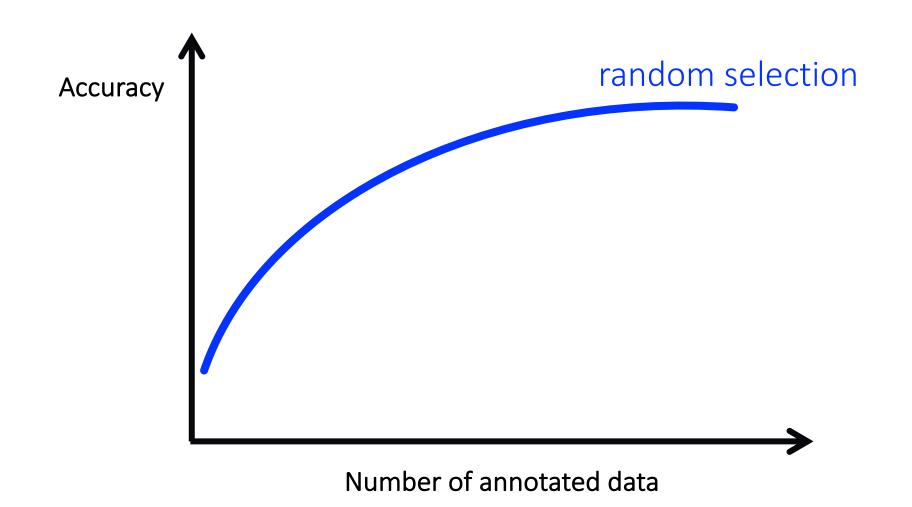
Introduction

Objective

Aim #1

Aim #2

Aim #3



Hypothesis: Wisely selecting important samples can reduce annotation cost

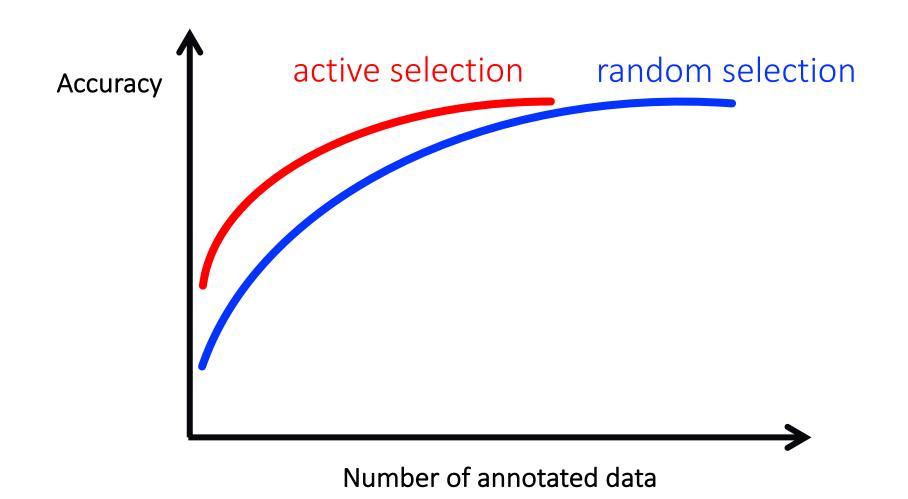
Introduction

Objective

Aim #1

Aim #2

Aim #3



Hypothesis: Wisely selecting important samples can reduce annotation cost

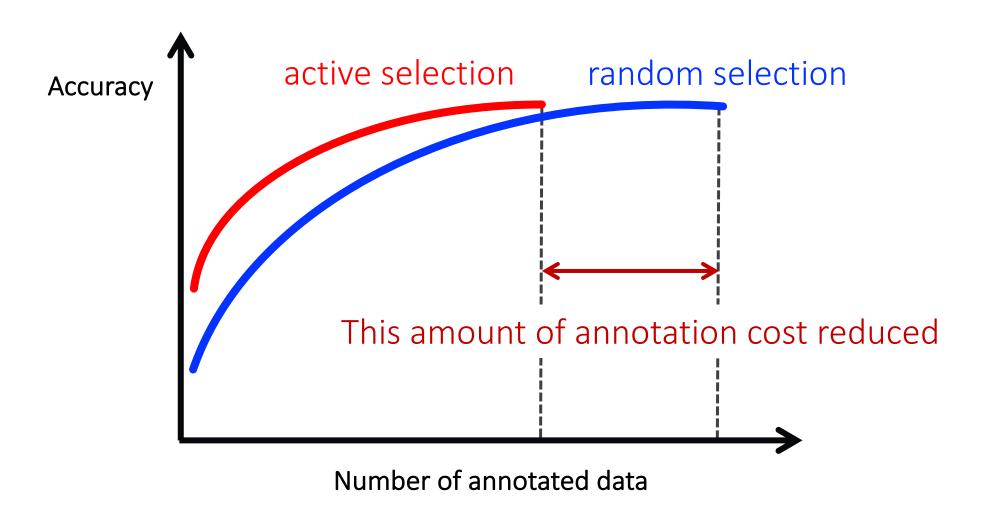
Introduction

Objective

Aim #1

Aim #2

Aim #3



Contribution: Reduce annotation cost by >60% compared to random selection

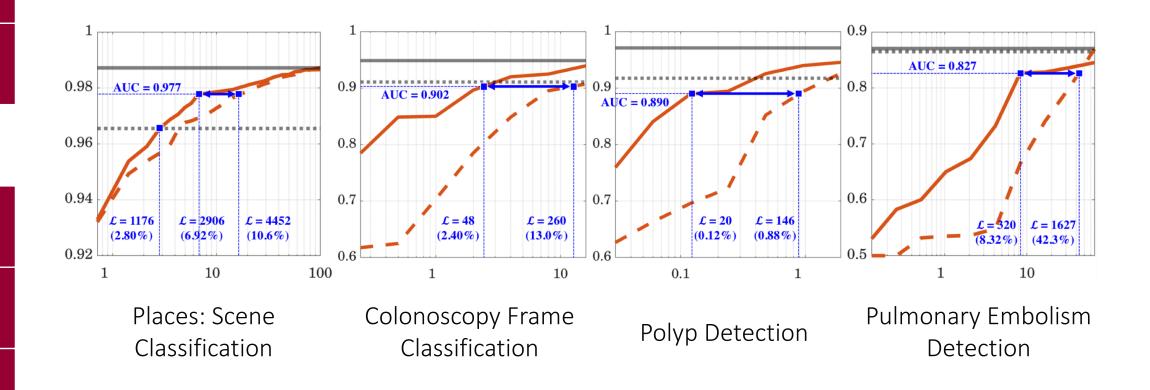
Introduction

Objective

Aim #1

Aim #2

Aim #3



- 1. Zhou, Zongwei, et al. "Integrating active learning and transfer learning for carotid intima-media thickness video interpretation." Journal of digital imaging 32.2 (2019): 290-299.
- 2. Zhou, Zongwei, et al. "Active, Continual Fine Tuning of Convolutional Neural Networks for Reducing Annotation Efforts." arXiv preprint arXiv:1802.00912 (2018).
- 3. Zhou, Zongwei, et al. "Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

Proposal: Iteratively suggest important samples at the patient-level

Introduction

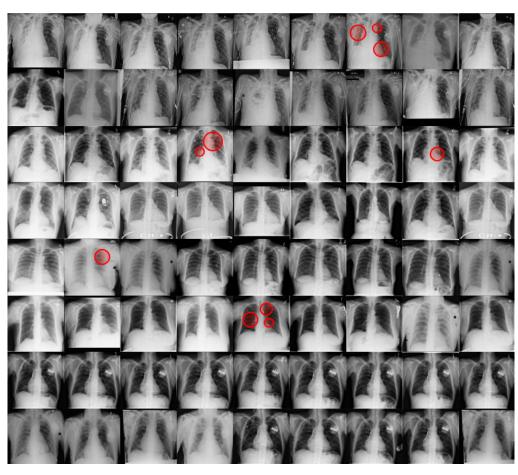
Objective

Aim #1

Aim #2

Aim #3

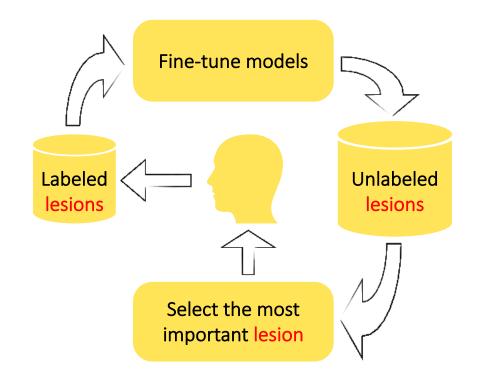
Summary



Lesion-level annotation

Drawbacks:

Experts must annotate the same patient multiple times



Proposal: Iteratively suggest important samples at the patient-level

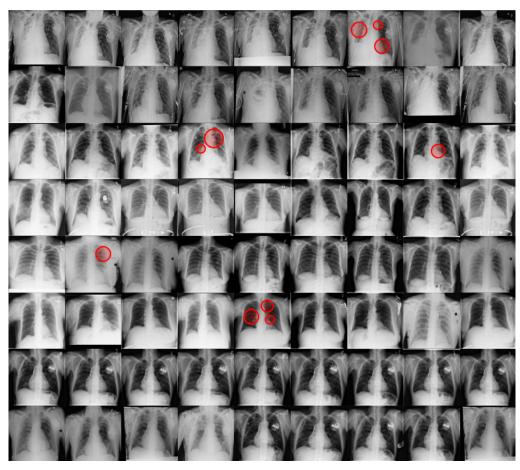
Introduction

Objective

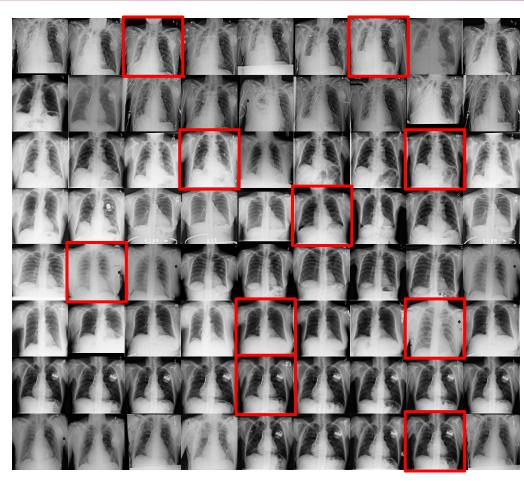
Aim #1

Aim #2

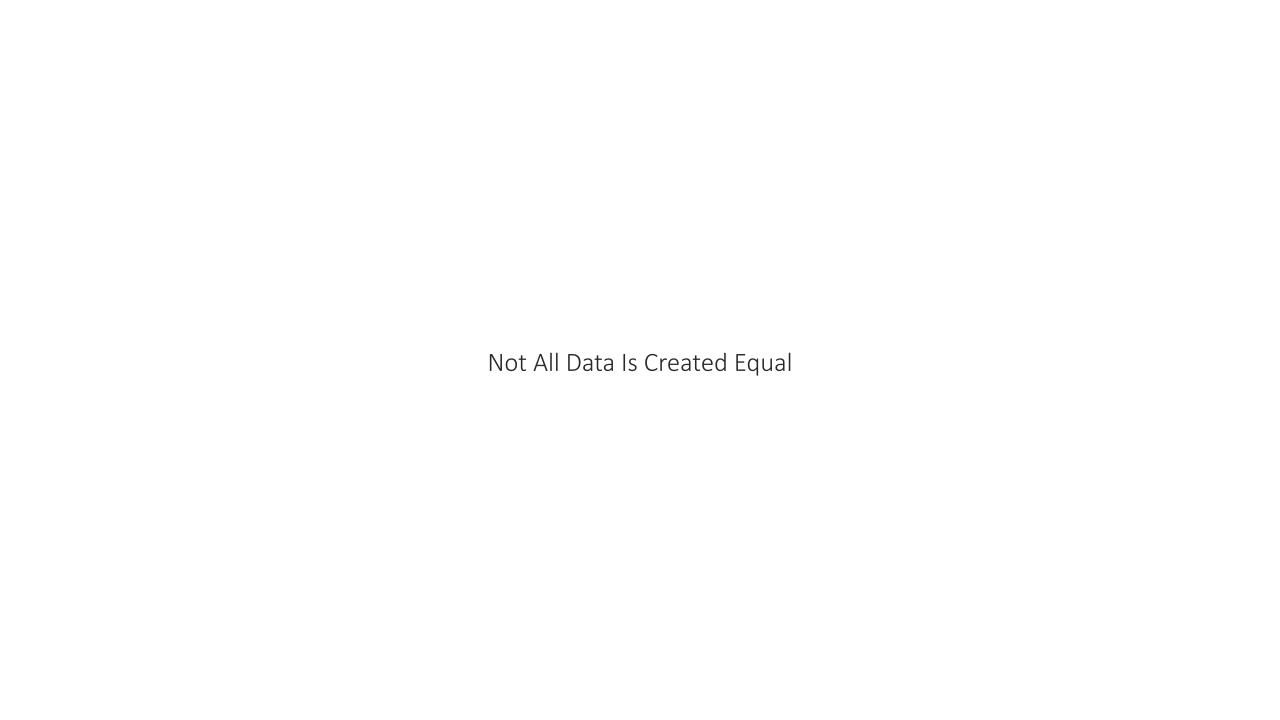
Aim #3



Lesion-level annotation



Patient-level annotation



Problem: Enhance the architecture for modeling 1,000 annotated images

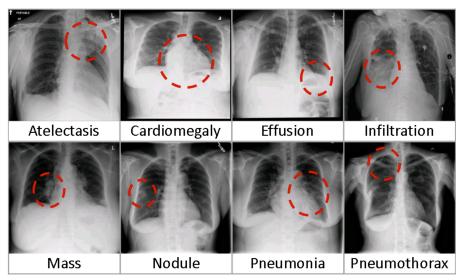
Introduction

Objective

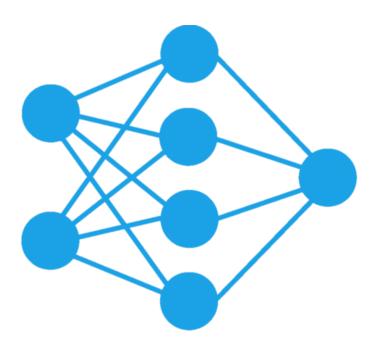
Aim #1

Aim #2

Aim #3



\$ 1,000 annotation budget ©



Segmentation: Partition an image into multiple segments to ease the analysis

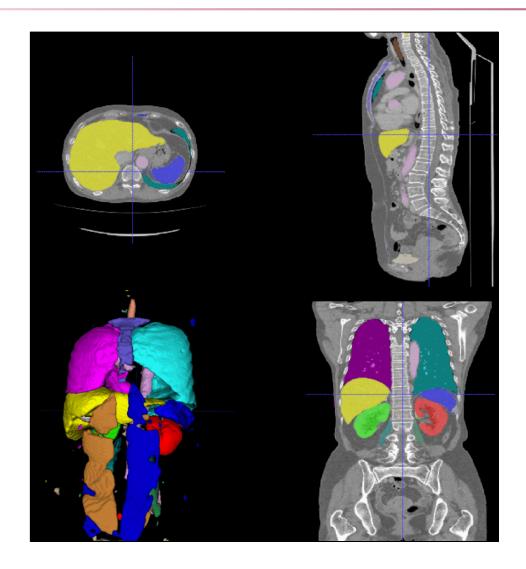
Introduction

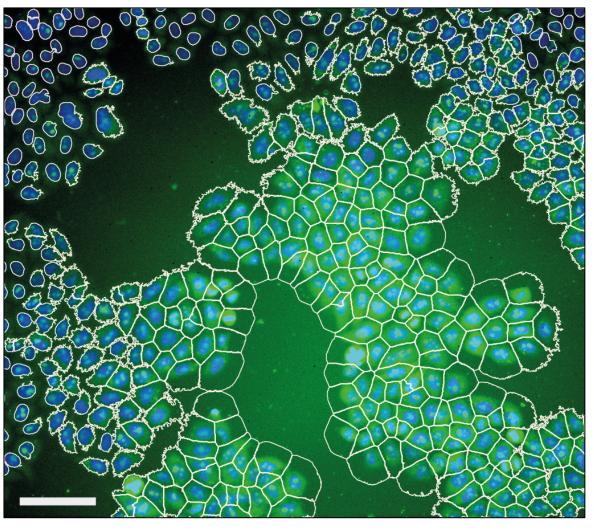
Objective

Aim #1

Aim #2

Aim #3





Segmentation: Partition an image into multiple segments to ease the analysis

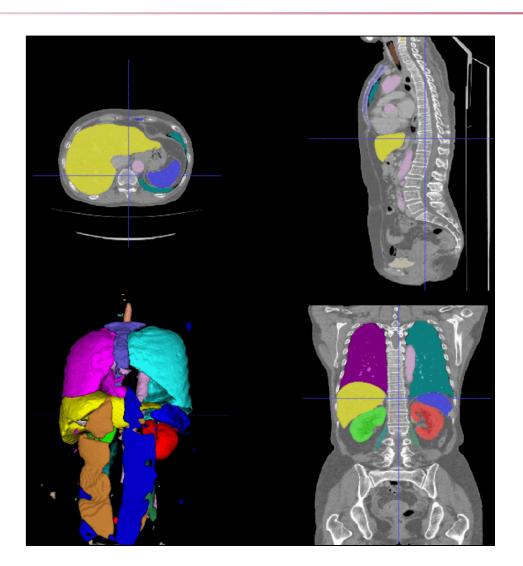
Introduction

Objective

Aim #1

Aim #2

Aim #3



e.g., liver & lesion segmentation



Hypothesis: Multi-scale feature aggregation leads to powerful models

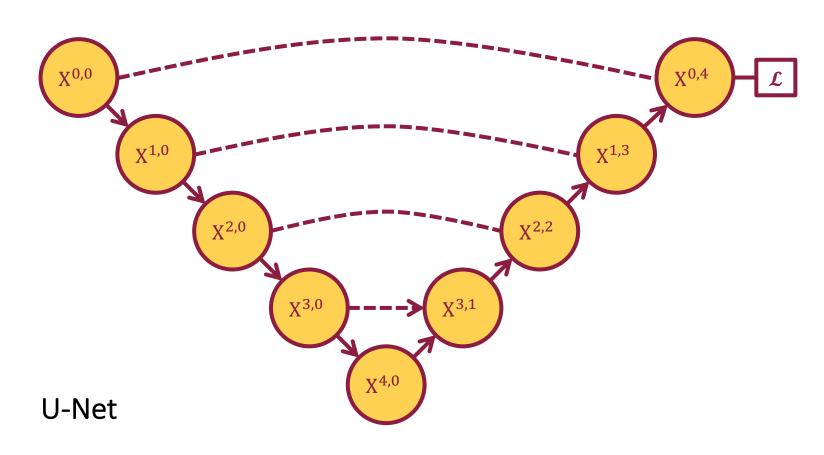
Introduction

Objective

Aim #1

Aim #2

Aim #3



^{1.} Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.

Approach: Redesigned skip connections aggregate multi-scale features

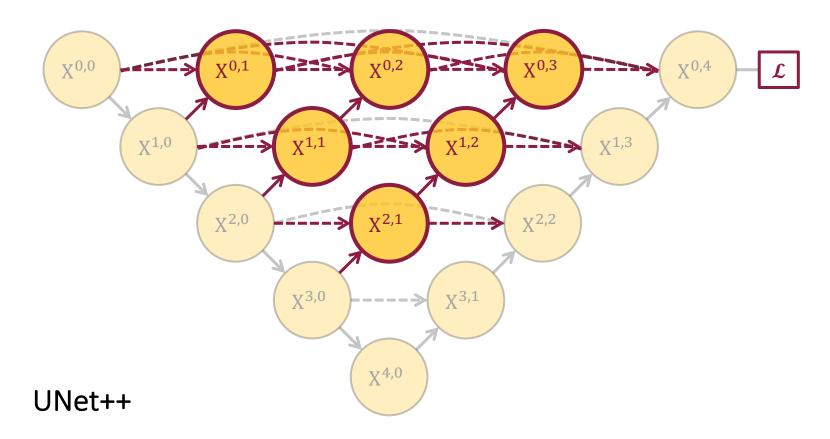
Introduction

Objective

Aim #1

Aim #2

Aim #3



^{1.} Zhou, Zongwei, et al. "Unet++: A nested u-net architecture for medical image segmentation." Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, Cham, 2018. 3-11.

Approach: Deep supervision enables a higher segmentation accuracy

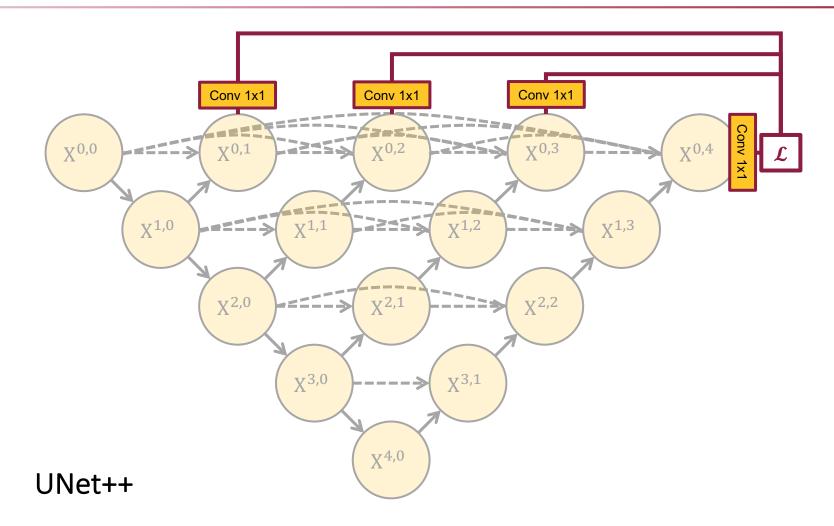
Introduction

Objective

Aim #1

Aim #2

Aim #3



^{1.} Zhou, Zongwei, et al. "Unet++: A nested u-net architecture for medical image segmentation." Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, Cham, 2018. 3-11.

Contribution: UNet++ significantly improves disease/organ segmentation

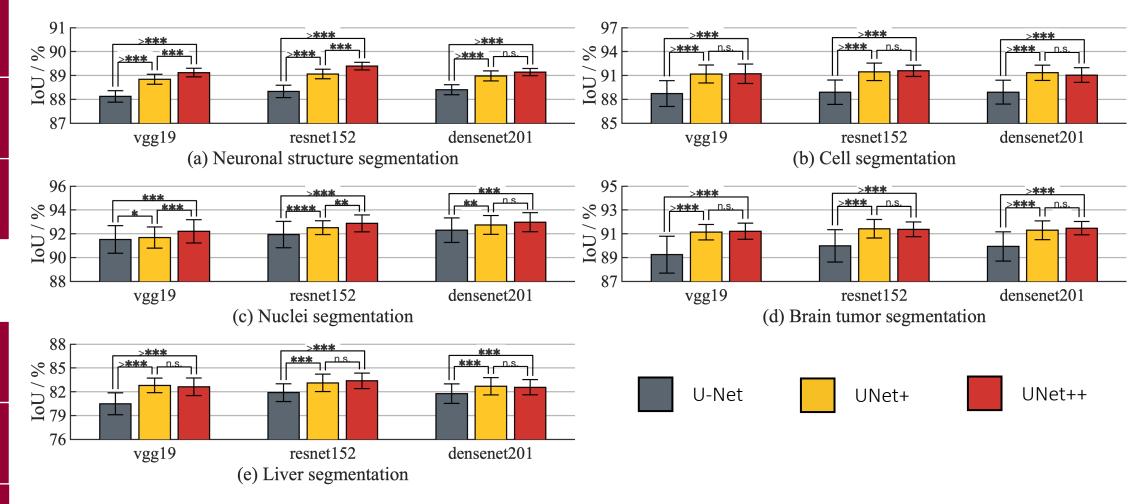
Introduction

Objective

Aim #1

Aim #2

Aim #3



- 1. Zhou, Zongwei, et al. "Unet++: A nested u-net architecture for medical image segmentation." Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, Cham, 2018. 3-11.
- 2. Zhou, Zongwei, et al. "Unet++: Redesigning skip connections to exploit multiscale features in image segmentation." IEEE transactions on medical imaging 39.6 (2019): 1856-1867.

Proposal: Optimize active learning by leveraging unique architectural design

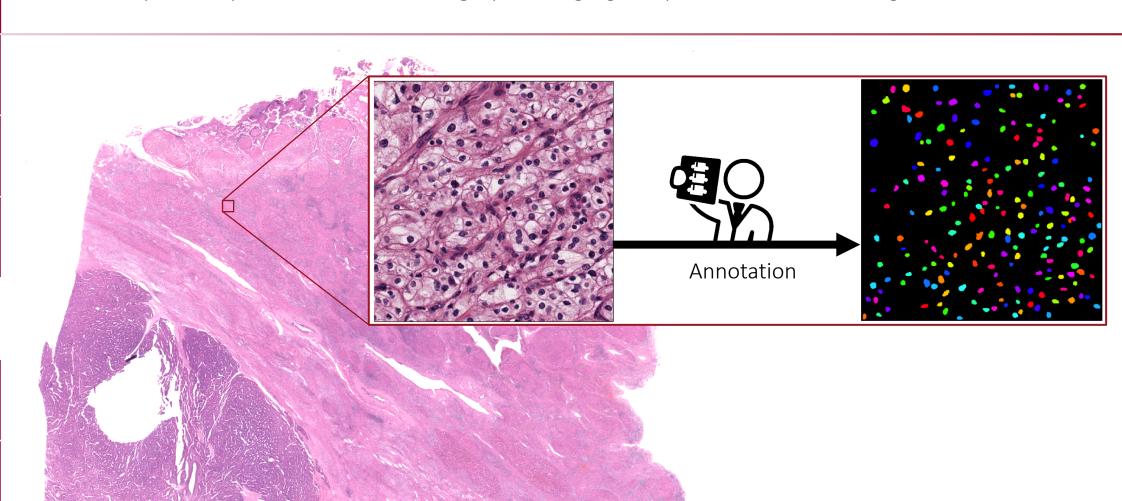
Introduction

Objective

Aim #1

Aim #2

Aim #3



Aim #2: Develop advanced architectures with existing annotation

Proposal: Optimize active learning by leveraging unique architectural design

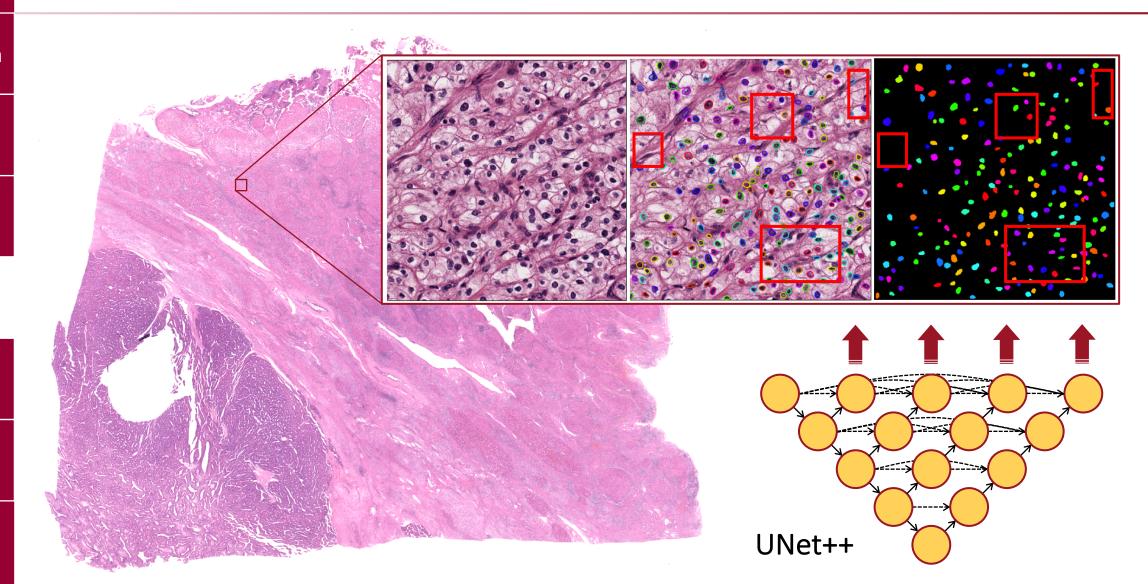
Introduction

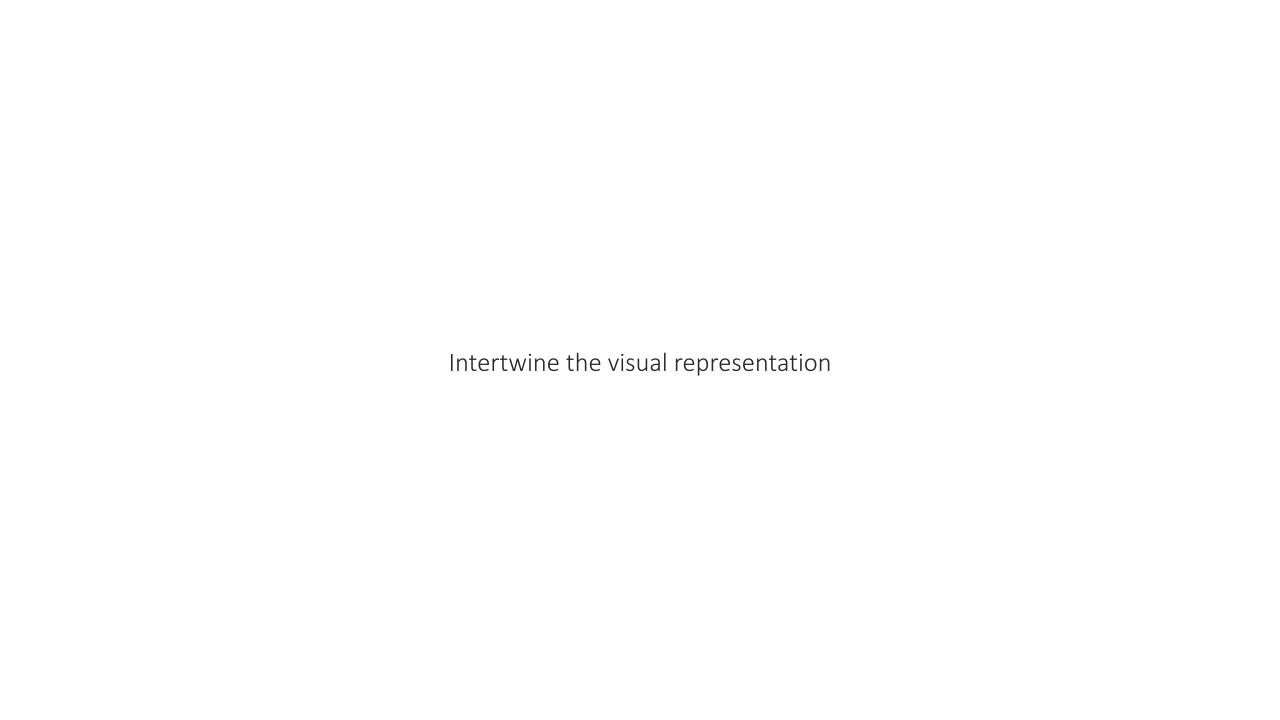
Objective

Aim #1

Aim #2

Aim #3





Problem: Utilize 1,000,000 images without systematic annotation

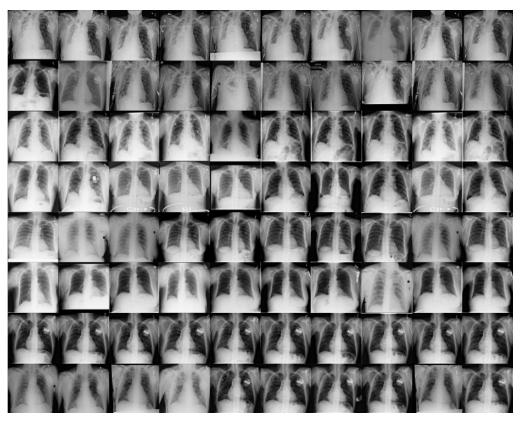
Introduction

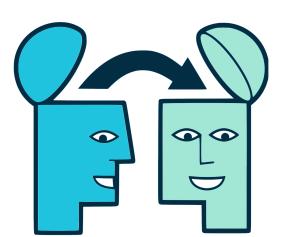
Objective

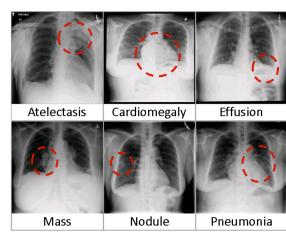
Aim #1

Aim #2

Aim #3







\$ 100 annotation budget ©

Hypothesis: Generic models can be built upon consistent, recurrent anatomy

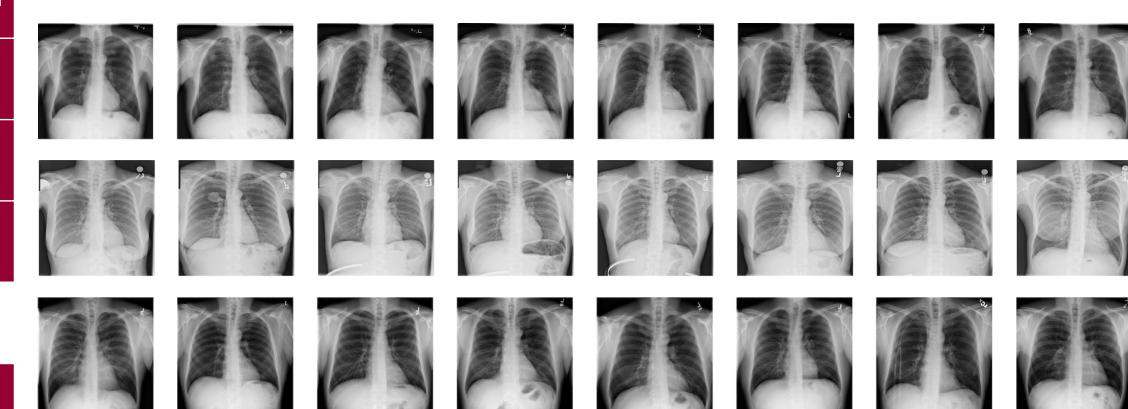
Introduction

Objective

Aim #1

Aim #2

Aim #3



Approach: Image restoration task helps model learn image representation

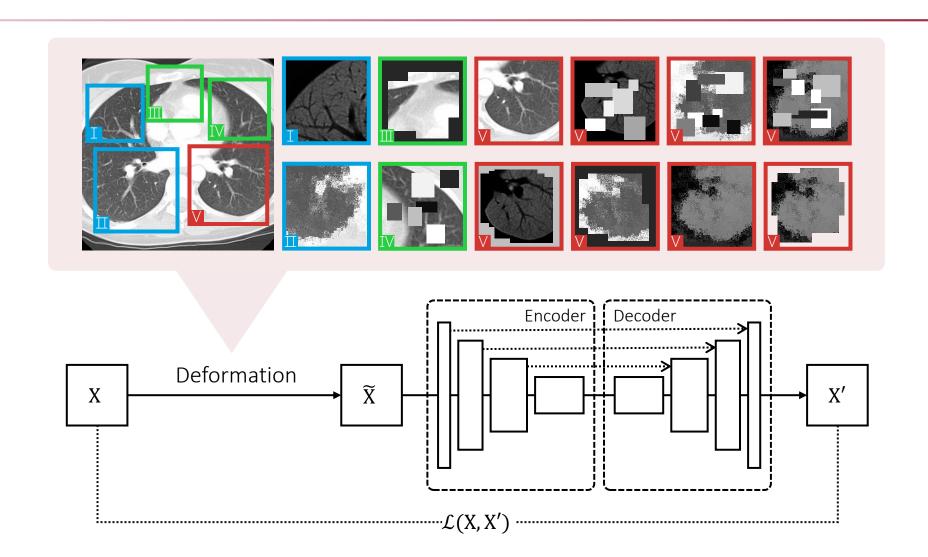
Introduction

Objective

Aim #1

Aim #2

Aim #3



Approach: Learning from multiple perspectives leads to robust models

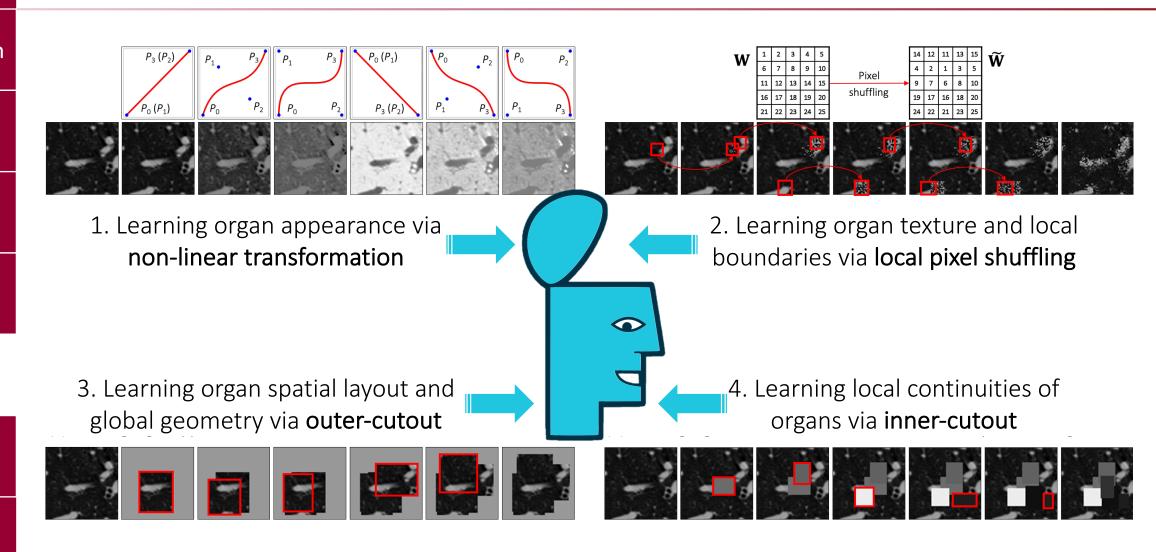
Introduction

Objective

Aim #1

Aim #2

Aim #3



Contribution: Build generic pre-trained 3D models, named "Models Genesis"

Introduction

Objective

Aim #1

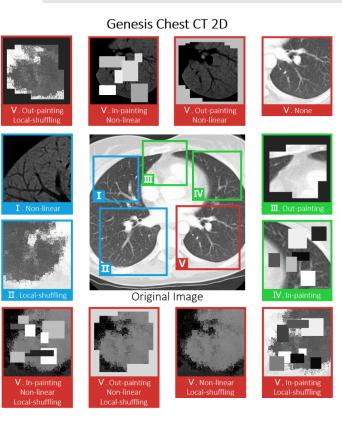
Aim #2

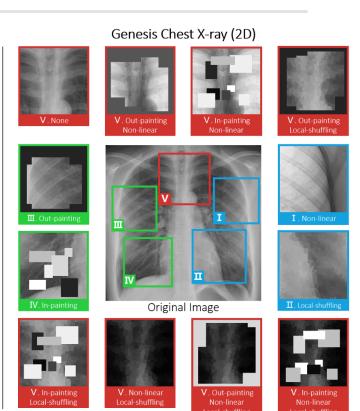
Aim #3

Summary



Models Genesis





- 1. Zhou, Zongwei, et al. "Models genesis: Generic autodidactic models for 3d medical image analysis." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2019.
- 2. Zhou, Zongwei, et al. "Models Genesis." arXiv preprint arXiv:2004.07882 (2020).

Contribution: Models Genesis exceed publicly available pre-trained 3D models

Introduction

Objective

Aim #1

Aim #2

Aim #3

Summary

Approach	Target tasks				
Approach	NCC ¹ (%)	$\mathtt{NCS}^2\ (\%)$	ECC^3 (%)	LCS ⁴ (%)	BMS ⁵ (%)
Random with Uniform Init	94.74±1.97	75.48±0.43	80.36±3.58	78.68±4.23	60.79±1.60
Random with Xavier Init (Glorot and Bengio, 2010)	94.25 ± 5.07	74.05 ± 1.97	79.99 ± 8.06	77.82 ± 3.87	58.52 ± 2.61
Random with MSRA Init (He et al., 2015)	96.03 ± 1.82	76.44 ± 0.45	78.24 ± 3.60	79.76 ± 5.43	63.00 ± 1.73
I3D (Carreira and Zisserman, 2017)	98.26±0.27	71.58±0.55	80.55±1.11	70.65±4.26	67.83±0.75
NiftyNet (Gibson et al., 2018b)	94.14±4.57	52.98 ± 2.05	77.33 ± 8.05	83.23 ± 1.05	60.78 ± 1.60
MedicalNet (Chen et al., 2019b)	95.80 ± 0.49	75.68 ± 0.32	86.43±1.44	$85.52 \pm 0.58^{\dagger}$	66.09 ± 1.35
De-noising (revised in 3D) (Vincent et al., 2010)	95.92±1.83	73.99±0.62	85.14±3.02	84.36±0.96	57.83±1.57
Patch shuffling (revised in 3D) (Chen et al., 2019a)	91.93 ± 2.32	75.74 ± 0.51	82.15±3.30	82.82 ± 2.35	52.95 ± 6.92
Rubik's Cube (revised) (Zhuang et al., 2019)	96.24±1.27	72.87 ± 0.16	80.49 ± 4.64	75.59 ± 0.20	62.75 ± 1.93
Genesis Chest CT (ours)	98.34±0.44	77.62 ± 0.64	87.20±2.87	85.10±2.15	67.96±1.29

¹ NCC	Lung nodule false positive reduction in CT images	
² NCS	Lung nodule segmentation in CT images	
³ ECC	Pulmonary embolism false positive reduction in CT images	
⁴ LCS	Liver segmentation in CT images	
⁵ BMS	Brain tumor segmentation in MR images	Genesis Chest CT



Target models

^{1.} Zhou, Zongwei, et al. "Models genesis: Generic autodidactic models for 3d medical image analysis." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2019.

^{2.} Zhou, Zongwei, et al. "Models Genesis." arXiv preprint arXiv:2004.07882 (2020).

Contribution: Models Genesis reduce annotation efforts by at least 30%

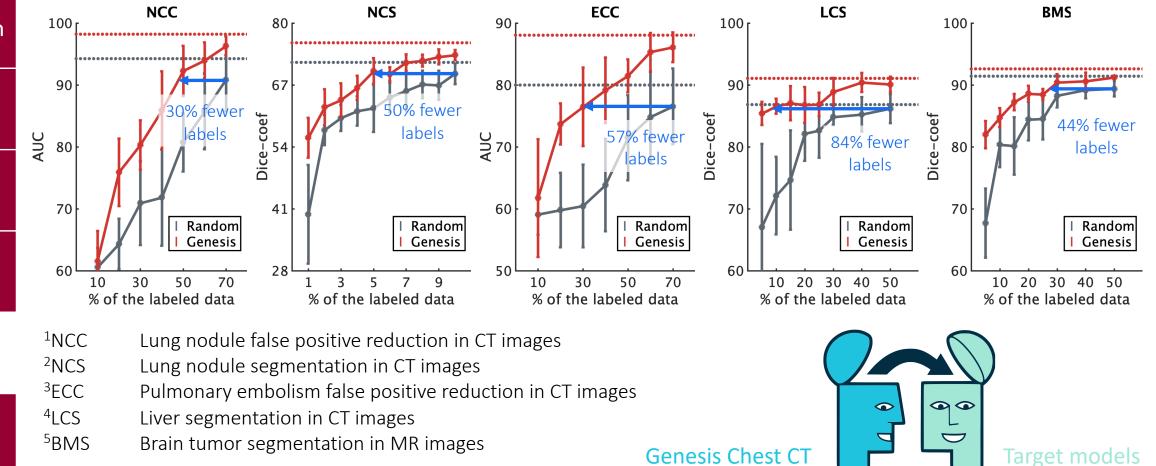
Introduction

Objective

Aim #1

Aim #2

Aim #3



^{1.} Zhou, Zongwei, et al. "Models genesis: Generic autodidactic models for 3d medical image analysis." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2019.

^{2.} Zhou, Zongwei, et al. "Models Genesis." arXiv preprint arXiv:2004.07882 (2020).

Proposal: Extend to modality-oriented and organ-oriented models

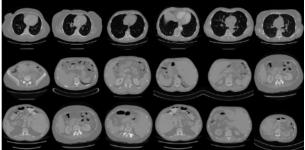
Introduction

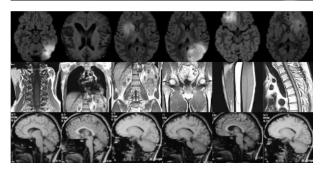
Objective

Aim #1

Aim #2

Aim #3





Proposal: Extend to modality-oriented and organ-oriented models

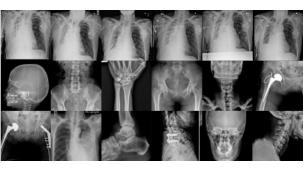
Introduction

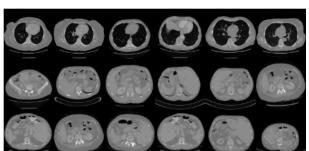
Objective

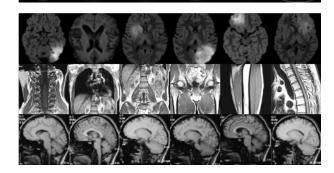
Aim #1

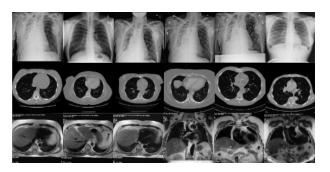
Aim #2

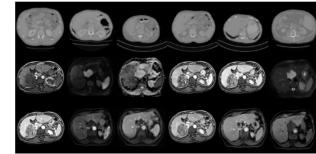
Aim #3

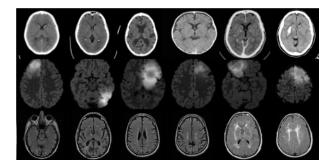












Holy Grail: effective across diseases, organs, and modalities.

Introduction

Objective

Aim #1

Aim #2

Aim #3

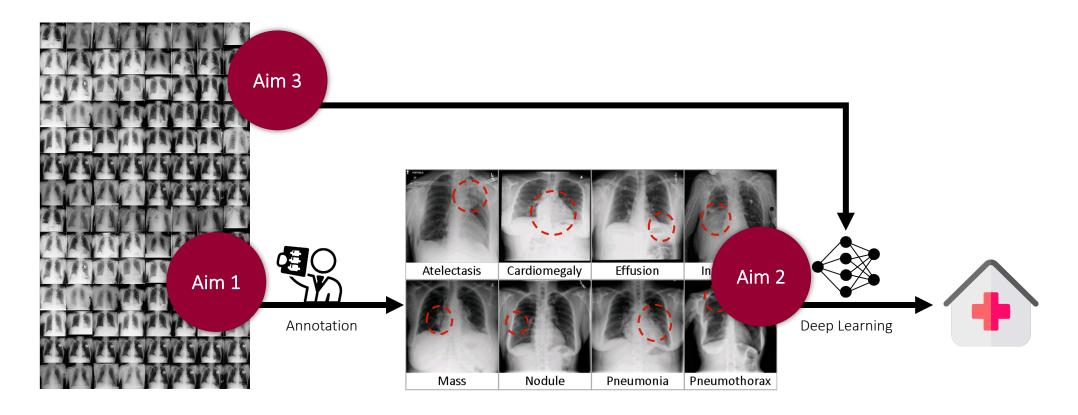
Summary

Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise computer-aided diagnosis system

Aim #1: Select necessary patients/samples for annotation

Aim #2: Develop advanced architectures with existing annotation

Aim #3: Extract generic knowledge directly from unannotated images



Acknowledgements

- Jianming Liang, Ph.D.
- Edward H. Shortliffe, M.D., Ph.D.
- Murthy Devarakonda, Ph.D.
- Michael B. Gotway, M.D.

Funding for research program supported by

- NIH R01 (R01HL128785)
- ASU-Mayo Grant
- Mayo Innovation Grant

Cost-Effective Deep Learning in Medical Image Analysis

Zongwei Zhou

Ph.D. Candidate, Biomedical Informatics College of Health Solutions, Arizona State University P: 1-(480)738-2575 | E: zongweiz@asu.edu