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Abstract. Contrastive representation learning is the state of the art
in computer vision, but requires huge mini-batch sizes, special network
design, or memory banks, making it unappealing for 3D medical imaging,
while in 3D medical imaging, reconstruction-based self-supervised learn-
ing reaches a new height in performance, but lacks mechanisms to learn
contrastive representation; therefore, this paper proposes a new frame-
work for self-supervised contrastive learning via reconstruction, called
Parts2Whole, because it exploits the universal and intrinsic part-whole
relationship to learn contrastive representation without using contrastive
loss: Reconstructing an image (whole) from its own parts compels the
model to learn similar latent features for all its own partsin the latent
space, while reconstructing different images (wholes) from their respec-
tive parts forces the model to simultaneously push those parts belonging
to different wholes farther apart from each other in the latent space;
thereby the trained model is capable of distinguishing images. We have
evaluated our Parts2Whole on five distinct imaging tasks covering both
classification and segmentation, and compared it with four competing
publicly available 3D pretrained models, showing that Parts2Whole sig-
nificantly outperforms in two out of five tasks while achieves competitive
performance on the rest three. This superior performance is attributable
to the contrastive representations learned with Parts2Whole. Codes and
pretrained models are available at github.com/JLiangLab/Parts2Whole.

Keywords: 3D Self-supervised Learning · Contrastive representation
learning · Transfer learning

1 Introduction and Related Work

Contrastive representation learning has made a leap in computer vision. For
example, MoCo [13] introduces the momentum mechanism, and SimCLR [10]
proposes a simple framework for contrastive learning; both methods achieve
state-of-the-art results and even outperform supervised ImageNet pretraining.
However, contrastive learning requires huge mini-batch sizes [10,14], special net-
work design [3], or memory banks [13,14,19] to store feature representations of
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all images in the dataset, making it unattractive for 3D medical imaging appli-
cations. Taking the mini-batch size as an example, SimCLR [10] recommends
8192, which is impractical for 3D image data due to the current GPU mem-
ory limitation. On the other hand, reconstruction-based self-supervised learning
has proven to be effective and efficient for 3D medical image analysis. Models
Genesis [20] establish autodidactic models by restoring images that underwent
four transformations. Later, Tao et al. [18] permute volumetric data via 3D voxel
rotation and then restore the original data to learn robust features. Therefore, in
this paper, we seek to answer the following critical question: Can we learn con-
trastive representations via reconstruction for 3D medical imaging to effectively
address the aforementioned barriers associated with contrastive learning?

To answer this question, we exploit a universal and intrinsic property, the
part-whole relationship, where an entire image is regarded as the whole and any
of its patches are considered as its parts. This property has been explored in Sim-
CLR [10] via contrastive prediction between the global view (whole) and local
view (part). Later, SwAV [7] observed that mapping local views to global views
can significantly increase the representation quality. However, instead of directly
comparing features or their cluster assignments, we reconstruct a whole from its
parts with a pair of encoder and decoder. By doing so, the deep model is com-
pelled to learn contrastive representations embedded with part-whole semantics:
(1) the representations of parts belonging to the same whole are close, and (2)
the representations of parts belonging to different wholes are far away. We refer
to our self-supervised learning framework as Parts2Whole.

Notably, Parts2Whole integrates advantages of several existing self-
supervised learning approaches, but overcomes their limitations: Parts2Whole
(1) discriminates individual images as Exemplar [11] aims for,1 but overcomes the
scalability issue stemmed from classification because of our use of reconstruction;
(2) learns contrastive representations like contrastive learning methods [10,13],
but eliminate the need for huge mini-batch size or memory bank by avoiding
direct feature comparison; (3) exploits recurrent anatomical structures like Mod-
els Genesis [20], but enriches feature representations with part-whole semantics.
Furthermore, Models Genesis [20], particularly in-painting/out-painting, only
interpolates/extrapolates known masked regions since there are pixel-coordinate
mappings between inputs and ground truths. However, in Parts2Whole, the
restored area is unknown and the pixel-coordinate mapping does not exist
because inputs are randomly cropped and resized from ground truths. In other
words, Parts2Whole needs to learn the scale of wholes as well as recover the miss-
ing contents, which is much harder and therefore yields more powerful source
models.

Our pretrained model is extensively evaluated on five distinct medical target
tasks and compare with four competing publicly available 3D models pretrained
in either fully supervised or self-supervised fashion in Sect. 3.2. The statistical

1 If we consider each whole image itself as a “label”, the training process of
Parts2Whole is equivalent to predicting the correct “label” given a part of one image
as input, or discriminating each image from its parts.
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Fig. 1. We propose a new self-supervised learning framework, called Parts2Whole,
because it exploits a universal and intrinsic property, the part-whole relationship, where
an entire image is regarded as the whole and its cropped patches are considered as its
parts. Parts2Whole aims to learn contrastive representations that embed the part-
whole semantics by reconstructing a whole (blue framed) from its resized randomly
cropped parts (red framed). To avoid trivial solutions, we crop each whole with random
scales and aspect ratios to erase low-level cues across different parts while maintaining
informative structures and textures. Additionally, we do not use the skip connections to
avoid low-level details passing from the encoder to decoder, yielding generic pretrained
models with strong transferability. The model is trained in an end-to-end fashion and
the reconstruction loss is measured with Euclidean distance. (Color figure online)

analysis in Table 1 shows Parts2Whole significantly outperforms in two out of
five tasks while achieves competitive performance on the rest three. We also
empirically validate that Parts2Whole can learn contrastive representations in an
image reconstruction framework in Fig. 2 and Sect. 3.3. Finally, our Parts2Whole
design is justified by ablating its main components in Table 2.

2 Proposed Method

Our goal is to learn contrastive representations embedded with part-whole
semantics by reconstructing the whole image from its parts, with 3D unlabeled
images. The proposed self-supervised learning framework is illustrated in Fig. 1.

Problem Formulation: Denote a set of 3D unlabeled images as {xi ∈ X :
i ∈ [1, N ]} where N is the number of whole images. Each image xi is randomly
cropped and resized to generate various parts, referred to as {pji ∈ Pi : i ∈
[1, N ], j ∈ [1,M)}. The task is to predict the whole image xi from its local
patch pji by training a pair of encoder (FE) and decoder (FD) to minimize the
loss function, denoted by L =

∑
i

∑
j l(FD(FE(pji )), xi), where l(·) is a metric
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measuring the difference between the model outputs and ground truths. We use
Euclidean distance as l(·) in this work.

Since the output images are generated via a shared decoder (FD), the encoder
(FE) is forced to learn contrastive representations that embed the part-whole
semantics. To be specific, after training, FE(pji ) and FE(pj

′
i′ ) are forced to be as

close as possible if i = i′ since the two representations are mapped to the same
groud truth (xi) via the shared decoder (FD), while far away from each other
otherwise since they are mapped to different ground truths. To avoid ambiguous
cases, we assume that no part is also a whole.

Removing Skip Connection: The skip connection (or the shortcut connec-
tion) was proposed in [6] and adopt to connect the encoder and decoder in the
U-Net architecture [15]. The goal is to let the decoder access the low-level fea-
tures produced by the encoder layers such that the boundaries in segmentation
maps produced by the decoder could be accurate. However, we argue that if
the network can solve the proxy task using lower-level cues, it does not need to
learn semantically meaningful representations. Therefore, in proxy task training,
we adopt the 3D U-Net architecture2 and remove the skip connections to force
the bottleneck representations encoding high-level information, which is different
from [18,20] in the perspective of network architectures. Table 2 demonstrates
the effects of skip connections in proxy task training. Notice that although we
cannot provide a pretrained decoder as [20] does, our model offers very com-
petitive performance on three segmentation tasks with a randomly initialized
decoder, suggesting our pretrained encoder learns strong, generic features.

Extracting Local Yet Informative Parts: The part size is a critical compo-
nent in our proxy task design. For example, when the crop scale is too large, the
task is downgraded to training an autoencoder without learning semantics. On
the other hand, the task can be unsolvable if the parts are too small and do not
contain enough information. To avoid such degenerate solutions, we restrict the
cropped patches covering less than 1/4 area of the whole image. By doing so, the
low-level cues across different parts are largely erased. Additionally, we set each
part covering more than 1/16 area of the original image to have discriminative
structures and textures. We analyze the effects of crop scales in Table 2.

3 Experiments

3.1 Experiment Settings

Proxy Task Training: We pretrain our model on LUNA-2016 [16] dataset
without using any label shipped with it. To avoid test data leakage, we use 623
CT scans instead of all 888 scans. We first cropped the original CT scans to
small, non-overlapped 28,144 sub-scans with dimensions equal to 128×128×64.
2 3D U-Net: github.com/ellisdg/3DUnetCNN.

https://github.com/ellisdg/3DUnetCNN
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Table 1. Our pretrained model achieves significantly better or at least compara-
ble performance on five distinct medical target tasks over four publicly available 3D
models pretrained in both supervised and self-supervised fashion. Each experiment
is conducted for 10 trials and summarized with the mean and standard deviation
(mean±s.t.d.). The paired t-test results between our method and the previous top-1
solution are tabulated in terms of the p-value. The best approaches are bolded while
the others are highlighted in blue if they achieve equivalent performance compared
with the best one (i.e., p > 0.05).

Approach
NCC NCS LCS†† ECC BMS†††

AUC(%) IoU(%) IoU(%) AUC(%) IoU(%)

Scratch 94.25±5.07 74.05±1.97 77.82±3.87 79.99±8.06 63.91±1.41

I3D [8] 98.26±0.27 71.58±0.55 70.65±4.26 80.55±1.11 67.83±0.75

NiftyNet [12] 94.14±4.57 52.98±2.05 83.23±1.05 77.33±8.05 60.78±1.60

MedicalNet [9] 95.80±0.49 75.68±0.32 85.52±0.58 86.43±1.44 66.09±1.35

Models Genesis [20] 97.90±0.57 77.62±0.64 84.17±1.93 87.20±2.87 68.08±1.15

Parts2Whole (ours) 98.67±0.23 77.35±0.61 86.70±0.62 86.14±2.97 68.33±0.41

p-value† 0.0011 0.1709 0.0002 0.2126 0.2654
† p-values are calculated between Parts2Whole and the previous top-1 solution.
†† The IoU score is calculated using binarized masks with a threshold equal to 0.5 to better
presented the segmentation quality, while [20] uses the original masks without thresholding.
††† Notice the results are different from those reported in [20] since we use real data while
Models Genesis were evaluated with synthetic data.

We treat each generated sub-scan as a whole and crop parts from it on the fly.
The cropped parts contain [1/16, 1/4] volume of the whole image.

Target Task Training: To extensively evaluate our pretrained 3D model, we
follow the practice employed in [20] and investigate five distinct medical appli-
cations, including lung nodule false positive reduction (NCC) [16], lung nodule
segmentation (NCS) [2], liver segmentation (LCS) [5], pulmonary embolism false
positive reduction (ECC) [17], and brain tumor segmentation (BMS) [4].

3.2 Parts2Whole Yields Competitive 3D Pretrained Models

To extensively evaluate our method, we compare Parts2Whole with four publicly
available 3D models pretrained in both supervised and self-supervised fashion.
To be specific, we test two models supervisely pretrained on 3D medical seg-
mentation tasks: NiftyNet [12] with Dense V-Networks and MedicalNet [9] with
3D-ResNet-101 as the backbone. The former is pretrained with a multi-organ CT
segmentation task, and the latter is pretrained with an aggregate dataset (i.e.,
3DSeg-8) from eight public medical datasets. We also evaluate I3D [8], which is
pretrained with natural videos but has been successfully applied for lung cancer
classification [1]. For self-supervised learning, we choose Models Genesis [20], the
current state of the art in 3D medical imaging, as our baseline.
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The experimental results are summarized in Table 1. First of all, we observe
that I3D works well on NCC but performs inferiorly on the other 4 tasks. This
suboptimal performance may attribute to the marked difference between natu-
ral and medical domains. On the other hand, NiftyNet and MedicalNet, which
are fully supervised with medical data, also show relatively poor transferability.
We hypothesize that the main reason is the limited amount of annotation for
supervising. A piece of evidence is that MedicalNet considerably outperforms
NiftyNet by aggregating eight datasets for pretraining. These observations high-
light the significance of self-supervised learning in the 3D medical domain, which
can close the domain gap and utilize the vast amount of unannotated data.

In contrast with fully supervised pretraining, both self-supervised learning
methods (Models Genesis and Parts2Whole) achieve promising results on all
five target tasks across organs, diseases, datasets, and modalities. Specifically,
for NCC and LCS, Parts2Whole not only has higher AUC/IoU scores and lower
standard deviations but also significantly outperforms Models Genesis based
on the t-test (p < 0.05). On the other hand, Models Genesis achieves better
performance by a small margin on NCS and ECC tasks. On the BMS task, which
has considerable distance from the proxy dataset (i.e., different disease, organ,
and modality), Parts2Whole is still competitive compared to other baselines.
Last but not least, since Models Genesis provides both pretrained encoder and
decoder, one can expect it to have certain advantages on segmentation tasks (i.e.,
NCS, LCS, and BMS). Nonetheless, Parts2Whole yields promising results on all
segmentation tasks with the same architecture (i.e., 3D U-Net) and a randomly
initialized decoder, suggesting the encoder pretrained with Parts2Whole learns
features with strong transferability. Next, we will experimentally investigate the
properties of feature representations learned in Parts2Whole.

3.3 Parts2Whole Learns Contrastive Representations

To understand the feature representations learned with Parts2Whole, we first
visualize the t-SNE embeddings of random, Models Genesis, and Parts2Whole
features in Fig. 2(a). Specifically, we randomly select 10 whole images and gen-
erate 200 parts for each image with a crop scale [1/16, 1]. Each circle represents
one part while each diamond represents a whole image (i.e., crop scale is equal
to 1). Different colors and circle sizes denote different images and crop scales.

First of all, unlike the entangled features from random initialization, features
pretrained with Models Genesis and Parts2Whole are more separable. How-
ever, Models Genesis features are not distinguishable especially when the inputs
are cropped with small scales (seeing the red-framed part). On the contrary,
Parts2Whole features from the same image are well grouped, while those from
different images are highly separable regardless of different crop scales. More
importantly, although the network is never trained with large patches or the
whole image (i.e., crop scale is equal to [1/4, 1]), it correctly aligns all features
from the same image together. This magnificent generalization ability suggests
that Parts2Whole learns representations that embed the part-whole semantics.
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Fig. 2. To understand the learned representations, we first visualize the t-SNE embed-
dings of random, Models Genesis, and Parts2Whole features in (a). We use circles to
represent parts while diamonds represent whole images. The colors and circle sizes
denote the different wholes and crop scales. Compared with random and Models Gen-
esis features, the Parts2Whole features from the same images are well grouped, while
features from different images are highly separable, despite the different crop scales.
Furthermore, we leverage the entire validation set and measure the cosine similarity
between features of two parts belonging to the same or different images in (b). Notice
that the similarity distributions of Parts2Whole features are more separable than those
of random and Models Genesis features, indicating that Parts2Whole learns better
representations. Last but not least, as shown in (c), the contrastive loss continues to
automatically decrease validating Parts2Whole can learn contrastive representations.

To further analyze the feature representations, we leverage all the validation
images. For each image xi, we generate 100 pairs of parts from it (referred to
as positive pairs). Additionally, we generate 100 negative pairs, while each one
contains one part from xi and one part from another random picked image. We
calculate the cosine similarity between each positive pair and negative pair. The
similarity distributions of random, Models Genesis, and Parts2Whole features
are shown in Fig. 2(b). Note that the similarity distributions of Parts2Whole
features are more separable than those of Models Genesis and random features.
It further indicates that Parts2Whole learns contrastive representations.

We also investigate the change of the contrastive loss along the training pro-
cess in Fig. 2(c). We test every whole image 100 times, while in each test, we ran-
domly generate 1 positive pair and 5000 negative pairs for the contrastive loss3

calculation. As illustrated, the contrastive loss continues to decrease as the recon-
struction loss decreases. Additionally, we perform the Pearson product-moment
correlation analysis between the reconstruction loss and the contrastive loss.

3 Denote the l2-normalized features of a positive pair and negative pair as
{FE(pi),FE(p′

i)} and {FE(pi),FE(pj)}, respectively. The contrastive loss is cal-

culated as − log
exp(FE(pi)·FE(p′

i)/τ)

exp(FE(pi)·FE(p′
i)/τ+

∑5000
j=1 exp(FE(pi)·FE(pj)/τ)

where τ = 0.7.
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Fig. 3. The overall performance of target tasks continues to improve as the validation
loss in the proxy task decreases. We validate the consistency of proxy and NCC/NCS tar-
get objective by evaluating 26 checkpoints saved in the proxy training process. It is clear
that as the proxy loss decreases, the average AUC/IoU score increases while the stan-
dard deviation decreases, suggesting that the pretrained model becomes more generic
and robust. Additionally, the Pearson product-moment correlation analysis indicates a
strong positive co-relationship between proxy and target objectives (Pearson’s r-value
> 0.5).

The high Pearson’s r-values (0.93) suggest a strong positive correlation, validat-
ing that Parts2Whole can minimize the contrastive loss and learn contrastive
representations with an image reconstruction framework. Notice that we achieve
the goal of contrastive learning with small mini-batch sizes (16 instead of 8192
suggested in [10]), a general 3D U-Net architecture, and without using memory
banks — effectively addressing the barriers associated with previous contrastive
learning methods. However, it is still not clear whether good contrastive features
embedded with part-whole semantics can yield strong transferability, since the
proxy task is agnostic about the target tasks. To answer this question, we sys-
tematically investigate the relationship between the reconstruction loss in the
proxy task and the test performance in target tasks in the next section.

3.4 Parts2Whole’s Objective Is Positively Correlated with Target
Objectives

Wu et al. [19] suggested that a good proxy task is able to improve the tar-
get task performance consistently as the proxy objective is optimized. Follow-
ing this practice, we validate the consistency of proxy and task objectives by
evaluating 26 checkpoints saved in the proxy training process. Specifically, we
fine-tune every checkpoint 5 times on NCC and NCS target tasks. To reduce the
computational cost, we only use partial training data (45% and 10% for NCC
and NCS, respectively. We plot the proxy reconstruction loss and target scores
(AUC/IoU) as a function of proxy task training epochs in Fig. 3. We can observe
that, as the reconstruction ability in the proxy task improves (i.e., the valida-
tion MSE decreases), the transferability of the pretrained model also improves
(i.e., the average target score (AUC/IoU) increases while the standard devia-
tion decreases). We further investigate this relationship by performing Pearson
product-moment correlation analysis between the proxy objective (i.e., recon-
struction quality, measured by (1-MSE)) and target objective (measured by
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Table 2. Target task performance on source models pretrained with different proxy
task settings. First, removing skip connections (comparing Column 2 to 3) can signifi-
cantly improve the performance, suggesting skip connections provide shortcuts to solve
the proxy task. We also observe that by reducing the cropping scale (from Column 3
to 6), the overall performer continuously increases, plateaus at [1/16, 1/4], and appears
to saturate when the scale is less than 1/8. These observations indicate the importance
of crop scales in our proxy task design.

Setting [ 1
16

, 1] w/ s.c.† [ 1
16

, 1] [ 1
16

, 1
2
] [ 1

16
, 1
4
] [ 1

16
, 1
8
] [ 1

32
, 1
16

]

NCC 88.48±8.24 93.78±2.12 91.48±0.45 94.84±1.58 93.52±1.32 91.69±4.12

NCS 70.64±0.21†† 72.72±0.42 73.29±0.58 74.23±0.87 73.43±0.32 73.66±0.36
† The source model is trained with skip connections (s.c.) between the encoder and decoder.
†† We fine-tune both pretrained encoder and decoder on the target task.

AUC/IoU scores). The high Pearson’s r-values (0.82 and 0.88 in NCC and NCS,
respectively) suggest a strong positive co-relationship between proxy and tar-
get objectives. This analysis indicates that our superior target performance is
attributable to the decreasing of reconstruction loss and the learned contrastive
features.

3.5 Ablation Study

A Good Proxy Task Needs to be Hard But Feasible. Our Parts2Whole
design contains two main components: removing skip connections and selecting
proper crop scales. We ablate the impacts of the two components to justify our
proxy task design. We evaluate source models pretrained with different proxy
task settings on NCC and NCS target tasks with 45% and 10% training data,
respectively. The experimental results are tabulated in Table 2.

First, we study the effects of skip connections in Column 2 to 3 of Table 2.
By removing skip connections while keeping the same cropping scale, the target
performance improves significantly by 5.30 and 2.08 points in NCC and NCS,
respectively. It suggests that skip connections may pass lower-level details from
the encoder to decoder, and ergo provide some shortcuts to solve the proxy task.

Second, with the same network architecture (i.e., no skip connections), we
study the effects of different part sizes in Column 3–7 of Table 2. When the upper
bound of part sizes is gradually reduced, the overall performance continuously
increases, plateaus at 1/4, and appears to saturate at 1/8. On the other hand,
when the parts are too small (i.e., less than 1/16), the target performance drops
by 3.15 and 0.57 points in NCC and NCS, respectively. These observations indicate
the importance of proper part sizes in our proxy task design—the parts should
be small enough to avoid trivial solutions while large enough to contain enough
information to recover the whole images. In other words, we would like to point
out that, naturally, a good proxy task should be hard enough but still feasible.
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4 Conclusion and Future Work

We present a new self-supervised framework, Parts2Whole, by exploiting the
universal and intrinsic part-whole relationship. Our Parts2Whole can learn
contrastive representations in an image reconstruction framework. The exper-
imental results show our pretrained model achieves competitive performance
over four publicly available pretrained 3D models on five distinct medical tar-
get tasks. However, since we only use the part-whole relationship, incorporat-
ing other domain knowledge or transformations may boost the results further,
as suggested in [10,20]. One promising direction is to include color/intensity
transformations since the similar intensity distribution across parts from one
image may provide shortcuts to solve the proxy task [10]. On the other hand,
Parts2Whole can minimize contrastive loss without explicitly training with it. It
points out an intriguing future work—integrating Parts2Whole and contrastive
learning into a unified framework to make the leap in the 3D medical imaging
domain.
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