

Towards Annotation-Efficient Deep Learning for Computer-Aided Diagnosis

Zongwei Zhou

Ph.D. Candidate, Biomedical Informatics College of Health Solutions, Arizona State University P: 1-(480)738-2575 | E: zongweiz@asu.edu

Objective

Aim 1

Aim 2

Aim 3

Summary

Imaging data account for about 90% of all healthcare data

Deep Learning has ushered in a revolution in medical imaging

- 1. "The Digital Universe Driving Data Growth in Healthcare." published by EMC with research and analysis from IDC (12/13)
- 2. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature 521.7553 (2015): 436-444

Objective

Aim 1

Aim 2

Aim 3

Summary

To match human diagnostic precision, deep learning requires a lot of annotation cost.

- 42,290 radiologist-annotated CT images for lung cancer diagnosis
- 128,175 ophthalmologist-annotated retinal images for diabetic retinopathy detection
- 129,450 dermatologist-annotated images for skin cancer classification

- 1. Ardila, Diego, et al. "End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography." Nature medicine 25.6 (2019): 954-961.
- 2. Gulshan, Varun, et al. "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs." Jama 316.22 (2016): 2402-2410.
- 3. Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks." nature 542.7639 (2017): 115-118.

Objective

Aim 1

Aim 2

Aim 3

Summary

To match human diagnostic precision, deep learning requires a lot of annotation cost.

- 42,290 radiologist-annotated CT images for lung cancer diagnosis
- 128,175 ophthalmologist-annotated retinal images for diabetic retinopathy detection
- 129,450 dermatologist-annotated images for skin cancer classification

How to develop annotation-efficient deep learning without such BIG annotated data?

Significant, especially for these scenarios:

- A flood of patients are waiting for results during an outbreak
- Doctors do not have time to annotate every case for algorithm development
- Not many doctors have expertise for novel/rare diseases

Objective

Aim 1

Aim 2

Aim 3

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Introduction

Objective

Aim 1

Aim 2

Aim 3

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Introduction

Objective

Aim 1

Aim 2

Aim 3

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Hypothesis: With a small part of the dataset annotated, we can deliver deep models that approximate or even outperform those that require annotating the entire dataset.

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Hypothesis: With a small part of the dataset annotated, we can deliver deep models that approximate or even outperform those that require annotating the entire dataset.

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Hypothesis: With a small part of the dataset annotated, we can deliver deep models that approximate or even outperform those that require annotating the entire dataset.

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Polyp detection

Neuronal structure segmentation

Brain/tumor segmentation

Lung nodule detection

Cell/nuclei segmentation

Kidney/lesion segmentation

Pulmonary embolism detection

Liver/lesion segmentation

Pulmonary diseases classification

Task: Find the most important 1,000 images from 1,000,000 images

Introduction

Objective

Aim 1

Aim 2

Aim 3

Approach: "Human-in-the-loop" active learning procedure

Introduction

Objective

Aim 1

Aim 2

Aim 3

Approach: "Human-in-the-loop" active learning procedure

Introduction

Objective

Aim 1

Aim 2

Aim 3

Approach: "Human-in-the-loop" active learning procedure

Introduction

Objective

Aim 1

Aim 2

Aim 3

Approach: "Human-in-the-loop" active learning procedure

Introduction

Objective

Aim 1

Aim 2

Aim 3

Summary

Select the most important images

Approach: "Human-in-the-loop" active learning procedure

Introduction

Objective

Aim 1

Aim 2

Aim 3

Summary

Select the most important images

Approach: "Human-in-the-loop" active learning procedure

Introduction

Objective

Aim 1

Aim 2

Aim 3

Summary

Select the most important images

Approach: "Human-in-the-loop" active learning procedure

Introduction

Objective

Aim 1

Aim 2

Aim 3

Summary

Select the most important images

Approach: "Human-in-the-loop" active learning procedure, *uncertainty-based*

Introduction

Objective

Aim 1

Aim 2

Aim 3

Summary

Select the most important images

Approach: "Human-in-the-loop" active learning procedure, *diversity-based*

Introduction

Objective

Aim 1

Aim 2

Aim 3

Summary

Select the most important images

Which two samples would you annotate first?

Approach: "Human-in-the-loop" active learning procedure, *diversity-based*

Introduction

Objective

Aim 1

Aim 2

Aim 3

Summary

Select the most important images

Which two samples would you annotate first?

Approach: "Human-in-the-loop" active learning procedure, *diversity-based*

Introduction

Objective

Aim 1

Aim 2

Aim 3

Approach: "Human-in-the-loop" active learning procedure, *diversity-based*

Introduction

Objective

Aim 1

Aim 2

Aim 3

Approach: "Human-in-the-loop" active learning procedure, *diversity-based*

Introduction

Objective

Aim 1

Aim 2

Aim 3

Summary

To train the deep model, many patches are usually generated via data augmentation; these patches generated from the same image share the **same label** (cat), and they are expected to have **similar predictions** by the current model.

Approach: "Human-in-the-loop" active learning procedure, *diversity-based*

Introduction

Objective

Aim 1

Aim 2

Aim 3

Hypothesis: Wisely selecting important samples can reduce annotation cost

Introduction

Objective

Aim 1

Aim 2

Aim 3

Contribution: Reduce annotation cost by over 80% compared with random selection

Introduction

Objective

Aim₁

Aim 2

Aim 3

- 1. Zhou, Zongwei, et al. "Integrating active learning and transfer learning for carotid intima-media thickness video interpretation." Journal of digital imaging 32.2 (2019): 290-299.
- 2. Zhou, Zongwei, et al. "Active, Continual Fine Tuning of Convolutional Neural Networks for Reducing Annotation Efforts." Medical Image Analysis (2021): 101997.
- 3. Zhou, Zongwei, et al. "Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7340-7351. 2017.

Contribution: Reduce annotation cost by over 80% compared with random selection

Introduction

Objective

Aim 1

Aim 2

Aim 3

- 1. Zhou, Zongwei, et al. "Integrating active learning and transfer learning for carotid intima-media thickness video interpretation." Journal of digital imaging 32.2 (2019): 290-299.
- 2. Zhou, Zongwei, et al. "Active, Continual Fine Tuning of Convolutional Neural Networks for Reducing Annotation Efforts." Medical Image Analysis (2021): 101997.
- 3. Zhou, Zongwei, et al. "Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7340-7351. 2017.

Discussion: Iteratively suggest important samples at the patient-level

Introduction

Objective

Aim 1

Aim 2

Aim 3

Lesion-level annotation

Aim 1: Acquiring necessary annotation efficiently from human experts

Discussion: Iteratively suggest important samples at the patient-level

Introduction

Objective

Aim 1

Aim 2

Aim 3

Patient-level annotation

Not All Data Is Created Equal

Publications for Aim 1:

- Z. Zhou, J. Shin, L. Zhang, S. Gurudu, M. Gotway, J. Liang, 2017. Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally. CVPR'17, one of only five papers in biomedical imaging accepted by CVPR'17.
- Z. Zhou, J. Shin, S. Gurudu, M. Gotway, J. Liang, 2021. Active, Continual Fine Tuning of Convolutional Neural Networks for Reducing Annotation Efforts. *Medical Image Analysis*.
- Z. Zhou, J. Shin, R. Feng, R. Hurst, C. Kendall, J. Liang, 2019. Integrating Active Learning and Transfer Learning for Carotid Intima-Media Thickness Video Interpretation. *Journal of Digital Imaging*.

Not All Data Is Created Equal

Clinical Impacts of Aim 1:

- The continual learning capability of deep models encourages data, label, and model reuse, significantly improving the training efficiency.
- An efficient "human-in-the-loop" procedure assists radiologists in quickly dismissing patients with negative results, therefore dramatically reducing the burden of annotation.
- An instant on-line feedback process makes it possible for CAD systems to be self-learning and selfimproving via continual fine-tuning.

Task: Enhance the architecture for modeling 1,000 annotated images

Introduction

Objective

Aim 1

Aim 2

Aim 3

Segmentation: Partition an image into multiple segments to ease the analysis

Introduction

Objective

Aim 1

Aim 2

Aim 3

e.g., liver & lesion segmentation

Hypothesis: Multi-scale feature aggregation leads to powerful models

Introduction

Objective

Aim 1

Aim 2

Aim 3

^{1.} Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.

Approach: Redesigned skip connections aggregate multi-scale features

Introduction

Objective

Aim 1

Aim 2

Aim 3

^{1.} Zhou, Zongwei, et al. "Unet++: A nested u-net architecture for medical image segmentation." Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, Cham, 2018. 3-11.

Approach: Redesigned skip connections aggregate multi-scale features

Introduction

Objective

Aim 1

Aim 2

Aim 3

Approach: Deep supervision stabilizes model training and enables model pruning

Introduction

Objective

Aim 1

Aim 2

Aim 3

^{1.} Zhou, Zongwei, et al. "Unet++: A nested u-net architecture for medical image segmentation." Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, Cham, 2018. 3-11.

Approach: Deep supervision stabilizes model training and enables model pruning

Introduction

Objective

Aim 1

Aim 2

Aim 3

^{1.} Zhou, Zongwei, et al. "Unet++: A nested u-net architecture for medical image segmentation." Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, Cham, 2018. 3-11.

Contribution: UNet++ significantly improves disease/organ segmentation

Introduction

Objective

Aim 1

Aim 2

Aim 3

Summary

1. Zhou, Zongwei, et al. "Unet++: Redesigning skip connections to exploit multiscale features in image segmentation." IEEE transactions on medical imaging 39.6 (2019): 1856-1867.

Contribution: UNet++ significantly improves disease/organ segmentation

Introduction

Objective

Aim 1

Aim 2

Aim 3

- 1. Zhou, Zongwei, et al. "Unet++: A nested u-net architecture for medical image segmentation." Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, Cham, 2018. 3-11.
- 2. Zhou, Zongwei, et al. "Unet++: Redesigning skip connections to exploit multiscale features in image segmentation." IEEE transactions on medical imaging 39.6 (2019): 1856-1867.

Contribution: UNet++ significantly improves disease/organ segmentation

Introduction

Objective

Aim 1

Aim₂

Aim 3

^{1.} Zhou, Zongwei, et al. "Unet++: A nested u-net architecture for medical image segmentation." Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, Cham, 2018. 3-11.

^{2.} Zhou, Zongwei, et al. "Unet++: Redesigning skip connections to exploit multiscale features in image segmentation." IEEE transactions on medical imaging 39.6 (2019): 1856-1867.

Intertwine the visual representation

Publications for Aim 2:

- Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, J. Liang, 2019. UNet++: Redesigning Skip Connections to Exploit Multi-Resolution Features in Image Segmentation. *IEEE Transactions on Medical Imaging, ranked among the most popular articles in IEEE TMI.*
- Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, J. Liang, 2018. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. *DLMIA'18*.

Intertwine the visual representation

Clinical Impacts of Aim 2:

- o Image segmentation can help compute clinically more accurate and desirable *imaging bio-markers* or *precision measurement*.
- Model pruning has the potential to exert important impact on deploying CAD systems to mobile devices and ordinary desktop/laptop PCs in clinical practice.

43.90% → 58.10% (U-Net \rightarrow UNet++)
Covid-19 segmentation (CT)
[Fan et al., IEEE TMI]

 $78.56\% \rightarrow 82.90\% (U-Net \rightarrow UNet++)$ Fiber tracing (corneal confocal microscopy) [Mou et al., MICCAI]

 $86.48\% \rightarrow 89.53\% (U-Net \rightarrow UNet++)$ Spleen segmentation (MRI) [Li et al., Computers & Graphics]

Intertwine the visual representation

Research Impacts of Aim 2: https://github.com/MrGiovanni/UNetPlusPlus

We have made UNet++ open science to stimulate collaborations among the research community and to help translate the technology to clinical practice.

 $86.59\% \rightarrow 87.22\% (U-Net \rightarrow UNet++)$ SegTHOR 2019 Challenge (CT)

[Zhang et al., IEEE TMI]

 $90.16\% \rightarrow 91.98\% (U-Net \rightarrow UNet++)$ Optic Disc & Cup Segmentation (fundus image) [Meng et al., MICCAI]

 $60.34\% \rightarrow 71.60\% (U-Net \rightarrow UNet++)$ Ground-glass opacity segmentation (CT) [Zheng et al., IEEE Access]

51.20% → 58.60% (U-Net → UNet++)

Esophagus segmentation (CT) [Huang et al., IEEE Access]

Liver tumor segmentation (CT) [Bajpai et al., Master Thesis]

 $63.72\% \rightarrow 66.25\% \text{ (U-Net} \rightarrow \text{UNet++)}$

 $90.70\% \rightarrow 91.56\% (U-Net \rightarrow UNet++)$ Heart segmentation (MRI) [Ji et al., MICCAI]

Task: Utilize 1,000,000 images without systematic annotation

Introduction

Objective

Aim 1

Aim 2

Aim 3

Hypothesis: Generic models can be built upon consistent, recurrent anatomy

Introduction

Objective

Aim 1

Aim 2

Aim 3

Approach: Image restoration task helps model learn image representation

Introduction

Objective

Aim 1

Aim 2

Aim 3

Approach: Learning from multiple perspectives leads to robust models

Introduction

Objective

Aim 1

Aim 2

Aim 3

Contribution: Build generic pre-trained 3D models, named "Models Genesis"

Introduction

Objective

Aim 1

Aim 2

Aim 3

Summary

Models Genesis

- 1. Zhou, Zongwei, et al. "Models genesis: Generic autodidactic models for 3d medical image analysis." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2019.
- 2. Zhou, Zongwei, et al. "Models genesis." Medical image analysis 67 (2021): 101840.

Contribution: Models Genesis exceed publicly available pre-trained 3D models

П				1	-0		
П	ntr	$\mathbf{\Omega}$	П		Ш	$oldsymbol{\cap}$	n
Ш	ntr	U	JU	ч	LI	U	ш

Objective

Aim 1

Aim 2

Aim 3

Summary

Pre-training	Approach	Target tasks				
110-uanning		NCC ¹ (%)	NCS^2 (%)	ECC ³ (%)	LCS ⁴ (%)	BMS ⁵ (%)
	Random with Uniform Init	94.74±1.97	75.48±0.43	80.36±3.58	78.68±4.23	60.79±1.60
No	Random with Xavier Init (Glorot and Bengio, 2010)	94.25 ± 5.07	74.05 ± 1.97	79.99 ± 8.06	77.82 ± 3.87	58.52 ± 2.61
	Random with MSRA Init (He et al., 2015)	96.03 ± 1.82	76.44 ± 0.45	78.24 ± 3.60	79.76 ± 5.43	63.00 ± 1.73
	I3D (Carreira and Zisserman, 2017)	98.26±0.27	71.58±0.55	80.55±1.11	70.65±4.26	67.83±0.75
(Fully) supervised	NiftyNet (Gibson et al., 2018b)	94.14±4.57	52.98 ± 2.05	77.33 ± 8.05	83.23 ± 1.05	60.78 ± 1.60
	MedicalNet (Chen et al., 2019b)	95.80 ± 0.49	75.68 ± 0.32	86.43±1.44	$85.52 \!\pm\! 0.58^{\dagger}$	66.09 ± 1.35
	De-noising (Vincent et al., 2010)	95.92±1.83	73.99±0.62	85.14±3.02	84.36±0.96	57.83±1.57
	In-painting (Pathak et al., 2016)	91.46 ± 2.97	76.02 ± 0.55	79.79±3.55	81.36±4.83	61.38 ± 3.84
	Jigsaw (Noroozi and Favaro, 2016)	95.47 ± 1.24	70.90 ± 1.55	81.79 ± 1.04	82.04 ± 1.26	63.33 ± 1.11
Self-supervised	DeepCluster (Caron et al., 2018)	97.22 ± 0.55	74.95 ± 0.46	84.82 ± 0.62	82.66 ± 1.00	65.96 ± 0.85
	Patch shuffling (Chen et al., 2019a)	91.93 ± 2.32	75.74 ± 0.51	82.15 ± 3.30	82.82 ± 2.35	52.95 ± 6.92
	Rubiks Cube (Zhuang et al., 2019)	96.24±1.27	72.87 ± 0.16	80.49 ± 4.64	75.59 ± 0.20	62.75 ± 1.93
	Genesis Chest CT (ours)	98.34±0.44	77.62 ± 0.64	87.20 ± 2.87	85.10±2.15	67.96±1.29

¹NCC Lung nodule false positive reduction in CT images

²NCS Lung nodule segmentation in CT images

³ECC Pulmonary embolism false positive reduction in CT images

⁴LCS Liver segmentation in CT images

⁵BMS Brain tumor segmentation in MR images

arget models

Genesis Chest C

^{1.} Zhou, Zongwei, *et αl.* "Models genesis: Generic autodidactic models for 3d medical image analysis." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2019.

^{2.} Zhou, Zongwei, et al. "Models genesis." Medical image analysis 67 (2021): 101840.

Contribution: Models Genesis reduce annotation efforts by at least 30%

Introduction

Objective

Aim 1

Aim 2

Aim 3

- ¹NCC Lung nodule false positive reduction in CT images

 ²NCS Lung nodule segmentation in CT images

 ³ECC Pulmonary embolism false positive reduction in CT images
- 4LCS Liver segmentation in CT images
- ⁵BMS Brain tumor segmentation in MR images

- 1. Zhou, Zongwei, et al. "Models genesis: Generic autodidactic models for 3d medical image analysis." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2019.
- 2. Zhou, Zongwei, et al. "Models genesis." Medical image analysis 67 (2021): 101840.

Discussion: Extend to modality-oriented and organ-oriented models

Introduction

Objective

Aim 1

Aim 2

Aim 3

Effective image features across diseases, organs, and modalities.

Publications for Aim 3:

- Z. Zhou, V. Sodha, M. M. Rahman Siddiquee, R. Feng, N. Tajbakhsh, M. Gotway, J. Liang, 2019.
 Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis. MICCAI'19, Young Scientist Award.
- Z. Zhou, V. Sodha, J. Pang, M. Gotway, J. Liang, 2020. Models Genesis. Medical Image Analysis, MedIA Best Paper Award.

Effective image features across diseases, organs, and modalities.

Clinical Impacts of Aim 3:

- Instead of building a model from scratch (demanding numerous data and label acquisition), a smaller dataset can be used to efficiently fine-tune the existing model.
- Generic pre-trained models can serve as a primary source of transfer learning for many medical imaging applications, leading to accelerated training and improved performance.

68.98% → 73.85% (Scratch → MG)
Prostate segmentation (MRI)

[Taleb et al., arXiv:1912.05396, 2019]

83.14% \rightarrow 88.30% (Scratch \rightarrow MG) Lymph node classification (histology)

 $72.30\% \rightarrow 85.81\%$ (Scratch \rightarrow MG) Brain hemorrhage classification (CT) [Zhu et al., arXiv:2012.07477, 2020]

[Xu et al., BIBM, 2020]

Effective image features across diseases, organs, and modalities.

Research Impacts of Aim 3: https://github.com/MrGiovanni/ModelsGenesis

We have made Models Genesis open science to stimulate collaborations among the research community and to help translate the technology to clinical practice.

67.04% → 74.53% (Scratch → MG) Blood cavity segmentation (MRI)

[Zhang et al., arXiv:2010.06107, 2020]

 $67.84\% \rightarrow 69.27\% (Scratch \rightarrow MG)$ 13 organ segmentation (CT) [Xie et al., arXiv:2011.12640, 2020]

89.98% → 95.01% (Scratch \rightarrow MG) Liver segmentation (CT&MRI)

[Taleb et al., arXiv:1912.05396, 2019]

77.50% → 92.50% (Scratch → MG) COVID-19 classification (CT) [Sun et al., arXiv:2012.06457, 2020]

Liver tumor segmentation (CT)

Alzheimer's disease classification (MRI) [Zhang et al., arXiv:2010.06107, 2020]

74.00% → 79.33% (Scratch → MG)

[Bajpai et al., Master Thesis, 2021]

75.97% → 77.50% (Scratch \rightarrow MG)

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Conclusion: With a small part of the dataset annotated, we can deliver deep models that approximate or even outperform those that require annotating the entire dataset. **Yes, we can!**

Annotation-efficiency: Applications of pulmonary embolism detection (*rank* #3) and liver tumor segmentation (*rank* #1, Shivam 2021)

Objective

Aim 1

Aim 2

Aim 3

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Conclusion: With a small part of the dataset annotated, we can deliver deep models that approximate or even outperform those that require annotating the entire dataset. **Yes, we can!**

Annotation-efficiency: Applications of pulmonary embolism detection (*rank* #3) and liver tumor segmentation (*rank* #1, Shivam 2021)

Interpreting medical images: A book chapter overviewing AI in medical image interpretation

THANK YOU

- Jianming Liang, Ph.D.
- Edward H. Shortliffe, M.D., Ph.D.
- Robert A. Greenes, Ph.D.
- Baoxin Li, Ph.D.
- Michael B. Gotway, M.D.
- Murthy Devarakonda, Ph.D.

Funding for research program supported by

- NIH Ro1 (Ro1HL128785)
- ASU-Mayo Grant
- Mayo Innovation Grant

Towards Annotation-Efficient Deep Learning for Computer-Aided Diagnosis

Zongwei Zhou

Ph.D. Candidate, Biomedical Informatics
College of Health Solutions, Arizona State University
P: 1-(480)738-2575 | E: zongweiz@asu.edu