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Imaging data account for about 9o% of all healthcare data
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Introduction

Objective

To match human diagnostic precision, deep learning requires a lot of annotation cost.
* 42,290 radiologist-annotated CT images for lung cancer diagnosis
* 128,175 ophthalmologist-annotated retinal images for diabetic retinopathy detection

* 129,450 dermatologist-annotated images for skin cancer classification
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Introduction

Objective

Aim1

Aim 2

Aim 3

Summary

To match human diagnostic precision, deep learning requires a lot of annotation cost.
* 42,290 radiologist-annotated CT images for lung cancer diagnosis
* 128,175 ophthalmologist-annotated retinal images for diabetic retinopathy detection

* 129,450 dermatologist-annotated images for skin cancer classification

How to develop annotation-efficient deep learning without such BIG annotated data?

Significant, especially for these scenarios:
* Aflood of patients are waiting for results during an outbreak
* Doctors do not have time to annotate every case for algorithm development

* Not many doctors have expertise for novel/rare diseases
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Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Introduction

Objective

i Gl A M el
/W e Vil T ol B G
A e AT
PP S PR
AL Lkl T

Aim1

bl R T YA
LNy AR e
Sl LAV ik e A Lk
LA) e WA AT il T
hlLATIE S VAT L Y i
Wbl T AR A o T
L e Ll e e e b LA
i L

L ) e — Q

Aim 2

Aim 3

Effusion Infiltration

Atelectasis Cardiomegaly

' el Lhllh o AN A LA
W e o Ml il o ) il A
oo Ay N R Annotate Model
i o R e e A" Ll
b/ Lol e b L L
I W } Nodule

~

Summary

Applications

Pneumonia Pneumothorax

Data Data & Annotation



Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems

Aim 1: Acquiring necessary annotation efficiently from human experts
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Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture
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Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts
Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images
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Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture
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Aim 3: Extracting generic knowledge directly from unannotated images
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Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture
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Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture
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Aim 3: Extracting generic knowledge directly from unannotated images
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Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Introduction

Aim 3: Extracting generic knowledge directly from unannotated images
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Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Hypothesis: With a small part of the dataset annotated, we can deliver deep models that
approximate or even outperform those that require annotating the entire dataset.

Model performance

Amount of annotated data
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Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Hypothesis: With a small part of the dataset annotated, we can deliver deep models that
approximate or even outperform those that require annotating the entire dataset.

A
)
Cl) I
cC
©
S
NS
o :
g .
K2 The reduced annotation cost
®) :
=

>

Amount of annotated data



Introduction

Objective

Aim1
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Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Hypothesis: With a small part of the dataset annotated, we can deliver deep models that
approximate or even outperform those that require annotating the entire dataset.
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Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts
Aim 2: Utilizing existing annotation effectively from advanced architecture
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Aim 1: Acquiring necessary annotation efficiently from human experts

Task: Find the most important 1,000 images from 1,000,000 images
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Aim 1: Acquiring necessary annotation efficiently from human experts

Approach: "Human-in-the-loop” active learning procedure
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Aim 1: Acquiring necessary annotation efficiently from human experts

Approach: "Human-in-the-loop” active learning procedure
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Aim 1: Acquiring necessary annotation efficiently from human experts

Approach: "Human-in-the-loop” active learning procedure
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Aim 1: Acquiring necessary annotation efficiently from human experts

Approach: "Human-in-the-loop” active learning procedure
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Aim 1: Acquiring necessary annotation efficiently from human experts

Approach: "Human-in-the-loop” active learning procedure
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Aim 1: Acquiring necessary annotation efficiently from human experts

Approach: "Human-in-the-loop” active learning procedure
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Aim 1: Acquiring necessary annotation efficiently from human experts

Approach: "Human-in-the-loop” active learning procedure
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Aim 1: Acquiring necessary annotation efficiently from human experts

Approach: "Human-in-the-loop” active learning procedure, uncertainty-based
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Aim 1: Acquiring necessary annotation efficiently from human experts

Approach: "Human-in-the-loop” active learning procedure, diversity-based
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Aim 1: Acquiring necessary annotation efficiently from human experts

Approach: "Human-in-the-loop” active learning procedure, diversity-based
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Aim 1: Acquiring necessary annotation efficiently from human experts

Approach: "Human-in-the-loop” active learning procedure, diversity-based
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Aim 1: Acquiring necessary annotation efficiently from human experts

Approach: "Human-in-the-loop” active learning procedure, diversity-based
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Aim 1: Acquiring necessary annotation efficiently from human experts

Approach: "Human-in-the-loop” active learning procedure, diversity-based
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Aim 3
To train the deep model, many patches are usually generated via data augmentation;
these patches generated from the same image share the same label (cat),

Summary and they are expected to have similar predictions by the current model.
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Aim 1: Acquiring necessary annotation efficiently from human experts

Approach: "Human-in-the-loop” active learning procedure, diversity-based
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Aim 1: Acquiring necessary annotation efficiently from human experts

Hypothesis: Wisely selecting important samples can reduce annotation cost
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Aim 1: Acquiring necessary annotation efficiently from human experts

Contribution: Reduce annotation cost by over 80% compared with random selection
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Aim 1: Acquiring necessary annotation efficiently from human experts

Contribution: Reduce annotation cost by over 80% compared with random selection

Introduction = 100% Fine-tuning @® Active continual fine-tuning

veenn 100% Full-training ® Random selection
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Discussion: lteratively suggest important samples at the patient-level
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Aim 1: Acquiring necessary annotation efficiently from human experts

Discussion: lteratively suggest important samples at the patient-level
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Not All Data Is Created Equal

Publications for Aim 1:

©)

Z.Zhou, J. Shin, L. Zhang, S. Gurudu, M. Gotway, J. Liang, 2017. Fine-tuning Convolutional Neural
Networks for Biomedical Image Analysis: Actively and Incrementally. CVPR'17, one of only five papers
in biomedical imaging accepted by CVPR'1;.

Z.Zhou, J. Shin, S. Gurudu, M. Gotway, J. Liang, 2021. Active, Continual Fine Tuning of Convolutional
Neural Networks for Reducing Annotation Efforts. Medical Image Analysis.

Z.Zhou, J. Shin, R. Feng, R. Hurst, C. Kendall, J. Liang, 2019. Integrating Active Learning and
Transfer Learning for Carotid Intima-Media Thickness Video Interpretation. Journal of Digital
Imaging.



Not All Data Is Created Equal

Clinical Impacts of Aim x:

o  The continual learning capability of deep models encourages data, label, and model reuse,
significantly improving the training efficiency.

o  An efficient "human-in-the-loop” procedure assists radiologists in quickly dismissing patients with
negative results, therefore dramatically reducing the burden of annotation.

o Aninstant on-line feedback process makes it possible for CAD systems to be self-learning and self-
improving via continual fine-tuning.



Aim 2: Utilizing existing annotation effectively from advanced architecture

Task: Enhance the architecture for modeling 1,000 annotated images
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Aim 2: Utilizing existing annotation effectively from advanced architecture

Segmentation: Partition an image into multiple segments to ease the analysis

Introduction
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Aim 2: Utilizing existing annotation effectively from advanced architecture

Hypothesis: Multi-scale feature aggregation leads to powerful models
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Aim 2: Utilizing existing annotation effectively from advanced architecture

Approach: Redesigned skip connections aggregate multi-scale features
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Aim 2: Utilizing existing annotation effectively from advanced architecture

Approach: Redesigned skip connections aggregate multi-scale features
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Aim 2: Utilizing existing annotation effectively from advanced architecture

Approach: Deep supervision stabilizes model training and enables model pruning
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Aim 2: Utilizing existing annotation effectively from advanced architecture

Approach: Deep supervision stabilizes model training and enables model pruning
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Aim 2: Utilizing existing annotation effectively from advanced architecture

Contribution: UNet++ significantly improves disease/organ segmentation
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Aim 2: Utilizing existing annotation effectively from advanced architecture

Contribution: UNet++ significantly improves disease/organ segmentation
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Aim 2: Utilizing existing annotation effectively from advanced architecture

Contribution: UNet++ significantly improves disease/organ segmentation

Introduction

Ground Truth UNet++ Prediction
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Intertwine the visual representation

Publications for Aim 2:

o Z.Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, J. Liang, 2019. UNet++: Redesigning Skip
Connections to Exploit Multi-Resolution Features in Image Segmentation. IEEE Transactions on
Medical Imaging, ranked among the most popular articles in IEEE TMI.

o Z.Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, J. Liang, 2018. UNet++: A Nested U-Net
Architecture for Medical Image Segmentation. DLMIA‘18.



Intertwine the visual representation

Clinical Impacts of Aim 2:

o Image segmentation can help compute clinically more accurate and desirable imaging bio-markers or
precision measurement.

o  Model pruning has the potential to exert important impact on deploying CAD systems to mobile
devices and ordinary desktop/laptop PCs in clinical practice.



43.90% — 58.10% (U-Net —» UNet++)
Covid-19 segmentation (CT)

78.56% — 82.90% (U-Net »UNet++)

Fiber tracing (corneal confocal microscopy)

86.48% — 89.53% (U-Net - UNet++)
Spleen segmentation (MRI)

Research Impacts of Aim 2: https://github.com/MrGiovanni/UNetPlusPlus

Intertwine the visual representation

o  We have made UNet++ open science to stimulate collaborations among the research community
and to help translate the technology to clinical practice.

86.59% — 87.22% (U-Net —» UNet++)
SegTHOR 2019 Challenge (CT)

90.16% — 91.98% (U-Net — UNet++)
Optic Disc & Cup Segmentation (fundus image)

60.34% — 71.60% (U-Net — UNet++)

Ground-glass opacity segmentation (CT)

51.20% — 58.60% (U-Net — UNet++)
Esophagus segmentation (CT)

63.72% — 66.25% (U-Net —» UNet++)

Liver tumor segmentation (CT)

90.70% — 91.56% (U-Net —» UNet++)
Heart segmentation (MRI)



Aim 3: Extracting generic knowledge directly from unannotated images

Task: Utilize 1,000,000 images without systematic annotation
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Aim 3: Extracting generic knowledge directly from unannotated images

Hypothesis: Generic models can be built upon consistent, recurrent anatomy
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Aim 3: Extracting generic knowledge directly from unannotated images

Approach: Image restoration task helps model learn image representation
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Aim 3: Extracting generic knowledge directly from unannotated images

Approach: Learning from multiple perspectives leads to robust models
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Objective

Aim 3

V. Out-painting
Local-shuffling

I . Non-linear

V. In-painting
Non-linear
Local-shuffling

Intervention. Springer, Cham, 2019.

Aim 3: Extracting generic knowledge directly from unannotated images

Contribution: Build generic pre-trained 3D models, named “"Models Genesis”

Models Genesis

Genesis Chest CT 2D

V. In-painting V. Out-painting
Non-linear Non-linear

V. Out-painting V. Non-linear
Non-linear Local-shuffling
Local-shuffling

V. In-painting
Local-shuffling

2. Zhou, Zongwei, et al. "Models genesis." Medical image analysis 67 (2021): 10184o0.

V. In-painting
Local-shuffling

Genesis Chest X-ray (2D)

V. Out-painting V. In-painting V. Out-painting
Non-linear Non-linear Local-shuffling

V. Non-linear V. Out-painting V. In-painting
Local-shuffling Non-linear Non-linear
Local-shuffling Local-shuffling

1. Zhou, Zongwei, et al. "Models genesis: Generic autodidactic models for 3d medical image analysis." International Conference on Medical Image Computing and Computer-Assisted
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Objective

Aim 3

Aim 3: Extracting generic knowledge directly from unannotated images

Contribution: Models Genesis exceed publicly available pre-trained 3D models

Pre-trainin Approach Target tasks
g pp NCCT (%) NCSZ (%) ECC’ (%) LCS* (%) BNS’ (%)

Random with Uniform Init 94.74+1.97 75.48+0.43 80.36+3.58 78.68+4.23 60.79+1.60

No Random with Xavier Init (Glorot and Bengio, 2010) 94.25+5.07 74.05+1.97 79.99+8.06 77.82+3.87 58.52+2.61
Random with MSRA Init (He et al., 2015) 96.03+1.82 76.44+0.45 78.24+3.60 79.76+5.43 63.00+1.73
I3D (Carreira and Zisserman, 2017) 98.26+0.27 71.58+0.55 80.55+1.11 70.65+4.26 67.83+0.75

(Fully) supervised NiftyNet (Gibson et al., 2018b) 94.14+4.57 52.98+2.05 77.33+£8.05 83.23+1.05 60.78+1.60
MedicalNet (Chen et al., 2019b) 95.80+0.49 75.68+0.32 86.43+1.44 85.52+0.58" 66.09+1.35
De-noising (Vincent et al., 2010) 95.92+1.83 73.99+0.62 85.14+3.02 84.36+0.96 57.83+1.57
In-painting (Pathak et al., 2016) 91.46+2.97 76.02+0.55 79.79+3.55 81.36+4.83 61.38+3.84
Jigsaw (Noroozi and Favaro, 2016) 95.47+1.24 70.90+1.55 81.79+1.04 82.04+1.26 63.33+1.11

Self-supervised DeepCluster (Caron et al., 2018) 97.22+0.55 74.95+0.46 84.82+0.62 82.66+1.00 65.96+0.85
Patch shuffling (Chen et al., 2019a) 91.93+2.32 75.74+0.51 82.15+3.30 82.82+2.35 52.95+6.92
Rubiks Cube (Zhuang et al., 2019) 96.24+1.27 72.87+0.16 80.49+4.64 75.59+0.20 62.75+1.93
Genesis Chest CT (ours) 98.34+0.44 77.62+0.64 87.20+2.87 85.10+2.15 67.96+1.29

INCC Lung nodule false positive reduction in CT images

2NCS Lung nodule segmentation in CT images P o \

3ECC Pulmonary embolism false positive reduction in CT images = -

4LCS Liver segmentation in CT images 1

SBMS Brain tumor segmentation in MR images 1




Aim 3: Extracting generic knowledge directly from unannotated images

Contribution: Models Genesis reduce annotation efforts by at least 30%
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Aim 3: Extracting generic knowledge directly from unannotated images

Discussion: Extend to modality-oriented and organ-oriented models
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Effective image features across diseases, organs, and modalities.

Publications for Aim 3:

o Z.Zhou, V. Sodha, M. M. Rahman Siddiquee, R. Feng, N. Tajbakhsh, M. Gotway, J. Liang, 2019.
Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis. MICCAI'19, Young
Scientist Award.

o Z.Zhou, V. Sodha, J. Pang, M. Gotway, J. Liang, 2020. Models Genesis. Medical Image Analysis,
MedIA Best Paper Award.



Effective image features across diseases, organs, and modalities.

Clinical Impacts of Aim 3:

o Instead of building a model from scratch (demanding numerous data and label acquisition), a smaller
dataset can be used to efficiently fine-tune the existing model.

o  Generic pre-trained models can serve as a primary source of transfer learning for many medical
imaging applications, leading to accelerated training and improved performance.



68.98% — 73.85% (Scratch - MG)

Prostate segmentation (MRI)

83.14% — 88.30% (Scratch —» MG)
Lymph node classification (histology)

72.30% — 85.81% (Scratch - MG)

Brain hemorrhage classification (CT)

Effective image features across diseases, organs, and modalities.

Research Impacts of Aim 3: https://github.com/MrGiovanni/ModelsGenesis

o  We have made Models Genesis open science to stimulate collaborations among the research

community and to help translate the technology to clinical practice.

67.04% — 74.53% (Scratch - MQG)
Blood cavity segmentation (MRI)

67.84% — 69.27% (Scratch - MG)

13 organ segmentation (CT)

89.98% — 95.01% (Scratch - MQG)
Liver segmentation (CT&MRI)

77-50% — 92.50% (Scratch - MQG)
COVID-19 classification (CT)

75.97% — 77.50% (Scratch - MG)

Liver tumor segmentation (CT)

74.00% — 79.33% (Scratch - MG)

Alzheimer's disease classification (MRI)
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Objective

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts
Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images
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Introduction

Objective

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Hypothesis: With a small part of the dataset annotated, we can deliver deep models that
approximate or even outperform those that require annotating the entire dataset.

Model performance

Amount of annotated data
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Objective

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Conclusion: With a small part of the dataset annotated, we can deliver deep models that
approximate or even outperform those that require annotating the entire dataset. Yes, we can!
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Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Conclusion: With a small part of the dataset annotated, we can deliver deep models that
approximate or even outperform those that require annotating the entire dataset. Yes, we can!
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Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Conclusion: With a small part of the dataset annotated, we can deliver deep models that
approximate or even outperform those that require annotating the entire dataset. Yes, we can!
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Objective

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Conclusion: With a small part of the dataset annotated, we can deliver deep models that
approximate or even outperform those that require annotating the entire dataset. Yes, we can!

Most medical applications fall in this region

Model performance

Amount of annotated data



Introduction
Objective

Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts
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Aim 3: Extracting generic knowledge directly from unannotated images

Conclusion: With a small part of the dataset annotated, we can deliver deep models that
approximate or even outperform those that require annotating the entire dataset. Yes, we can!

Annotation-efficiency: Applications of pulmonary embolism detection (rank #3) and liver
tumor segmentation (rank #1, Shivam 2021)



Summary

Goal: Minimize manual annotation efforts for rapid, precise computer-aided diagnosis systems
Aim 1: Acquiring necessary annotation efficiently from human experts

Aim 2: Utilizing existing annotation effectively from advanced architecture

Aim 3: Extracting generic knowledge directly from unannotated images

Conclusion: With a small part of the dataset annotated, we can deliver deep models that
approximate or even outperform those that require annotating the entire dataset. Yes, we can!

Annotation-efficiency: Applications of pulmonary embolism detection (rank #3) and liver
tumor segmentation (rank #1, Shivam 2021)

Interpreting medical images: A book chapter overviewing Al in medical image interpretation
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