We provide pre-trained 3D models!

Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis

MICCAI 2019 Young Scientist Award

Zongwei Zhou¹, Vatsal Sodha¹, Md Mahfuzur Rahman Siddiquee¹, Ruibin Feng¹, Nima Tajbakhsh¹, Michael B. Gotway², and Jianming Liang¹

¹ Arizona State University ² Mayo Clinic

We provide pre-trained 3D models!

Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis

MICCAI 2019 Young Scientist Award

这篇文章的贡献是设计了一个针对三维医学图像分析的预训练模型, 这样解决了以前大家只能用 ImageNet 里的二维数据训练出来的预模型, 并且得到更好的效果;在5个医学图像的分割和分类问题上取得领先的效果; 在作者的口头发言中也给出了开源代码 (https://github.com/MrGiovanni/ModelsGenesis)。

——沈定刚教授

MICCAI 2019:纪录、风向与学术思考

Existing publicly available 3D pre-trained models?

Many studies have shown that the performance on deep learning is significantly affected by volume of training data. The MedicalNet project provides a series of 3D-ResNet pre-trained models and relative code.

Natural images Medical images

Formed in 2D Formed in 3D

>14,000,000 annotation Zero annotation

ImageNet demands huge amount of annotation efforts, but Models Genesis are pre-trained with self-supervision.

Can we utilize the large number of available Chest CT images without systematic annotation to train source models that can yield high-performance target models via transfer learning?

We design it as a <u>simple</u> image restoration task, through which, the model can learn representation directly from image data itself.

I. Non-linear transformation

CT scan itself naturally comes with the pixel-wise annotation

Substance		Hounsfield units (HU)		
Air		-1000		
Fat		-120 to -90		
Water		0		
Bone	Cancellous	+300 to +400		
	Cortical	+1800 to +1900		
Parenchyma	Lung	-700 to - 600		
	Kidney	+20 to +45		
	Liver	+54 to +66		
	Lymph nodes	+10 to +20		
	Muscle	+35 to +55		

Source from en.wikipedia.org/wiki/Hounsfield_scale

I. Non-linear transformation

Learning organ appearance and intensity distribution

II. Local pixel shuffling

Learning organ texture and local boundaries

III. Outer-cutout

IV. Inner-cutout

Why are the proposed image deformations in your paper effective?

Medical images contain <u>similar anatomy</u>. The sophisticated yet recurrent anatomy offers <u>consistent patterns</u> for self-supervised learning to discover common representation of a particular body part.

Two classification applications

- 1. Lung nodule false positive reduction (CT)
- 2. PE false positive reduction 3D CT (CT)

- Lung nodule segmentation (CT)
- Liver segmentation (CT)
- Brain tumor segmentation (MRI)

Ablation study: The combined learning scheme exceeds each individual

Two classification applications

- 1. Lung nodule false positive reduction (NCC)
- 2. PE false positive reduction 3D CT (CT)

Three segmentation applications

- 1. Lung nodule segmentation (CT)
- 2. Liver segmentation (CT)
- 3. Brain tumor segmentation (MRI)

MAYO CLINIC

Image restoration is promising to help deep models learn common visual representation

Result I: Models Genesis outperform 3D models learning from scratch

Two classification applications

- 1. Lung nodule false positive reduction (NCC)
- 2. PE false positive reduction 3D CT (CT)

Three segmentation applications

- 1. Lung nodule segmentation (CT)
- 2. Liver segmentation (CT)
- 3. Brain tumor segmentation (MRI)

Result II: Models Genesis surpass existing pre-trained 3D models

Proxy task	Approach \ Target task	NCC^1 (%)	$\mathtt{NCS}^2\ (\%)$	ECC^3 (%)	$\mathtt{LCS}^4\ (\%)$	$\mathtt{BMS}^5~(\%)$
-	Random with Uniform Init	94.74±1.97	75.48±0.43	80.36±3.58	78.68±4.23	60.79±1.60
	Random with Xavier Init (Glorot and Bengio, 2010)	94.25 ± 5.07	74.05 ± 1.97	79.99 ± 8.06	77.82 ± 3.87	58.52 ± 2.61
	Random with MSRA Init (He et al., 2015)	96.03 ± 1.82	76.44 ± 0.45	78.24 ± 3.60	79.76 ± 5.43	63.00 ± 1.73
Full-supervision	I3D (Carreira and Zisserman, 2017)	98.26±0.27	71.31±0.37	80.55±1.11	69.82±4.95	67.83±0.75
	NiftyNet (Gibson et al., 2018b)	94.14±4.57	52.98 ± 2.05	77.33 ± 8.05	83.23 ± 1.05	60.78 ± 1.60
	MedicalNet (Chen et al., 2019b)	95.80 ± 0.49	75.68 ± 0.32	86.43 ± 1.44	$85.52 \!\pm\! 0.58^{\dagger}$	66.09 ± 1.35
Self-supervision	De-noising (revised in 3D) (Vincent et al., 2010)	95.92±1.83	73.99±0.62	85.14±3.02	84.36±0.96	57.83±1.57
	Patch shuffling (revised in 3D) (Chen et al., 2019a)	91.93 ± 2.32	75.74 ± 0.51	82.15 ± 3.30	82.82 ± 2.35	52.95 ± 6.92
	Genesis Chest CT (ours)	98.34 ± 0.44	77.62 ± 0.64	87.20 ± 2.87	85.10 ± 2.15	67.96 ± 1.29

¹ The winner in LUNA (2016) holds an official score of 0.968 vs. 0.971 (ours)

² Wu et al. (2018) holds a Dice of 74.05% vs. 75.86%±0.90% (ours)

³ Zhou et al. (2017) holds an AUC of 87.06% vs. 87.20% ±2.87% (ours)

⁴ The winner in LiTS (2017) with post-processing holds a Dice of 96.60% vs. 93.19%±0.46% (ours without post-processing)

⁵ We have only investigated the transfer learning from CT to MR Flair image domain, so the results are not submitted to BraTS 2018.

[†] Genesis Chest CT is slightly outperformed by MedicalNet in LCS because the latter was supervised pre-trained on the LiTS dataset in the proxy task.

Result III: Models Genesis reduce annotation efforts by at least 30%

Call for Papers

IEEE Transactions on Medical Imaging Special Issue on

Annotation-Efficient Deep Learning for Medical Imaging

https://ieee-tmi.org/Special_Issue_CFP_DL4MI.pdf

IMPORTANT DATES

Paper submission deadline: July 1, 2020

First reviews due: September 1, 2020
Revised manuscript due: November 1, 2020
Final decision: December 1, 2020
Camera ready version: December 15, 2020

GUEST EDITORS

Nima Tajbakhsh, PhD VoxelCloud, Inc.

Jianming Liang, PhD Arizona State University jianmi

Holger Roth, PhD Nvidia, Inc.

Demetri Terzopoulos, PhD University of California, Los Angeles

ntajbakhsh@voxelcloud.io

jianming.liang@asu.edu hroth@nvidia.com

dt@cs.ucla.edu

Result IV: Models Genesis consistently top any 2D/2.5D approaches

Result IV: Models Genesis consistently top any 2D/2.5D approaches

2.5D orthogonal

3D volume-based

Task: NCC	Random	ImageNet	Genesis
2D slice-based input	96.03±0.86	97.79±0.71	97.45±0.61
2.5D orthogonal input	95.76 ± 1.05	97.24 ± 1.01	97.07 ± 0.92
3D volume-based input	96.03±1.82	n/a	98.34±0.44
Task: ECC	Random	ImageNet	Genesis
			00110515
2D slice-based input	60.33±8.61	62.57±8.04	62.84±8.78
2D slice-based input 2.5D orthogonal input	60.33±8.61 71.27±4.64		

3D problems should be solved in 3D, directly but properly.

Models Genesis: <u>Generic Autodidactic</u> Models for <u>3D</u> Medical Image Analysis

We offer a set of powerful pre-trained 3D models, concluding that

- 1. Models Genesis outperform 3D models trained from scratch
- 2. Models Genesis surpass existing pre-trained 3D models
- 3. Models Genesis reduce annotation efforts by at least 30%
- 4. Models Genesis consistently top any 2D/2.5D approaches

We hope that our collective efforts will lead to the **Holy Grail** of Models Genesis, effective across diseases, organs, and modalities.

通用表征学习的好处在于,单个任务的数据量不大,难以训练一个好的模型。如果将所有任务放在一起,就会有更多的数据,进而更好地提升模型的性能。 "我们希望可以学到一个通用性的表达,对所有的任务都能适用。"

——周少华博士

Transfer learning **Genesis Brain Genesis Heart** Genesis X-ray Autodidactic Generic Autodidactic Models Genesis Kidney CT Unified Genesis Lung Models Genesis Genesis X-ray Medical ImageNet

Paper

This repository provides the official implementation of training Models Genesis as well as the usage of the pre-trained Models Genesis in the following paper:

Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis

Zongwei Zhou¹, Vatsal Sodha¹, Md Mahfuzur Rahman Siddiquee¹, Ruibin Feng¹, Nima Tajbakhsh¹, Michael B. Gotway², and Jianming Liang¹

¹ Arizona State University, ² Mayo Clinic

International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2019

Young Scientist Award

paper | code | slides | poster | talk (YouTube, YouKu) | blog

Fine-tune from our pre-trained Models Genesis

Models Genesis: PyTorch version available Inbox ×

Zongwei Zhou <zzhou82@asu.edu> to Zongwei, bcc: Greetings, We make the development of Models Genesis open science and invite researchers around the world to contribute to this effort.

Today we release **Models Genesis** official implementation in PyTorch.

The pre-trained weights, for both *Keras* and *PyTorch*, are now publicly available as well.

Download from Google Drive: https://drive.google.com/drive/folders/1H_e0PKPJSRwnAulE3XAQqfcgtK1gK8Cq?usp=sharing

Or download from Baidu Wangpan: https://pan.baidu.com/s/1Qnb1M9i0eeMZ_C416wm1bw (Pass: 72c7)

For more information, please refer to our <u>project page</u>. Thank you for your interest!

Zongwei Zhou

Ph.D. Candidate | Research Assistant
College of Health Solutions, Arizona State University
13212 E Shea Blvd, Scottsdale, AZ 85259
P: 1-(480)738-2575 | E: zongweiz@asu.edu

We provide pre-trained 3D models!

Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis

Questions?

Zongwei Zhou¹, Vatsal Sodha¹, Md Mahfuzur Rahman Siddiquee¹, Ruibin Feng¹, Nima Tajbakhsh¹, Michael B. Gotway², and Jianming Liang¹

¹ Arizona State University ² Mayo Clinic