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Deep learning
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Advantages: Generalizable
* Lung cancer

e Skin cancer

e Diabetic retinopathy
Barrier to medical imaging:
* Large annotation cost

C3: f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28

S2: f. maps

32x32
6@14x1

|
| Full conrlection ’ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Turing Award And $1 Million Given
To 3 Al Pioneers

h Nicole Martin Former Contributor ®
Al & Big Data
I write about digital marketing, data and privacy concerns.




Introduction

Significance

Aim #1

Aim #2

Aim #3

Summary

LETTERS

naturf(:l, =
https://doi.org/10.1038/5s41591-019-0447-x me lcme

Corrected: Author Correction

End-to-end lung cancer screening with
three-dimensional deep learning on low-dose
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JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY

Development and Validation of a Deep Learning Algorithm
for Detection of Diabetic Retinopathy

in Retinal Fundus Photographs
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Quickly develop an effective computer-aided diagnosis system is important

A flood of patients are pending during an outbreak

Doctors do not have time to annotate every case

 Not many doctors have expertise for novel diseases

Significance

Deep Learning

Atelectasis Cardiomegaly Effusion Infiltration

Annotation

Mass Nodule Pneumonia Pneumothorax

$1,000,000 annotation cost ® $1,000 annotation budget ©




Research goal: Exploit novel methods to minimize the manual labeling efforts for a
rapid, precise computer-aided diagnosis system

Aim #1: Acquire necessary annotation efficiently from human experts
Aim #2: Utilize existing annotation effectively from advanced architecture
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Aim #3: Extract generic knowledge directly from unannotated images
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Research goal: Exploit novel methods to minimize the manual labeling efforts for a
rapid, precise computer-aided diagnosis system

Aim #1: Acquire necessary annotation efficiently from human experts

. Aim #2: Utilize existing annotation effectively from advanced architecture
Introduction

Aim #3: Extract generic knowledge directly from unannotated images
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Brain/tumor segmentation Kidney/lesion segmentation Pulmonary diseases classification




Aim #1: Acquire necessary annotation efficiently from human experts

: Problem: Find the most important 1,000 images from 1,000,000 images
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Aim #1: Acquire necessary annotation efficiently from human experts

L5 Approach: “Human-in-the-loop” active learning procedure
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Aim #1: Acquire necessary annotation efficiently from human experts

Approach: “Human-in-the-loop” active learning procedure
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Aim #1: Acquire necessary annotation efficiently from human experts

Approach: “Human-in-the-loop” active learning procedure
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Aim #1: Acquire necessary annotation efficiently from human experts

Approach: “Human-in-the-loop” active learning procedure
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Aim #1: Acquire necessary annotation efficiently from human experts

Approach: “Human-in-the-loop” active learning procedure
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Aim #1: Acquire necessary annotation efficiently from human experts

Approach: “Human-in-the-loop” active learning procedure

Fine-tune models
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Aim #1: Acquire necessary annotation efficiently from human experts

Approach: “Human-in-the-loop” active learning procedure
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Aim #1: Acquire necessary annotation efficiently from human experts

Approach: “Human-in-the-loop” active learning procedure
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Aim #1: Acquire necessary annotation efficiently from human experts

Hypothesis: Wisely selecting important samples can reduce annotation cost

Accuracy active selection random selection
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Number of annotated data
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Aim #1: Acquire necessary annotation efficiently from human experts

Contribution: Reduce annotation cost by >60% compared to random selection
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Z. Zhou, et al. Integrating Active Learning and Transfer Learning for Carotid Intima-Media Thickness Video Interpretation. Journal of
Digital Imaging, 2019. (IF=2.57)

Z. Zhou, et al. Active Fine Tuning of Convolutional Neural Networks for Reducing Annotation Efforts. Submitted to Medical Image
Analysis. (IF=8.88)

Z. Zhou, et al. Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally. CVPR’17.



Aim #1: Acquire necessary annotation efficiently from human experts

Proposal: Iteratively suggest important samples at the patient-level
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Aim #1: Acquire necessary annotation efficiently from human experts

Proposal: Iteratively suggest important samples at the patient-level
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Aim #2: Utilize existing annotation effectively from advanced architecture

Problem: Enhance the architecture for modeling 1,000 annotated images
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Atelectasis Cardiomegaly Effusion Infiltration

Mass Nodule Pneumonia Pneumothorax

$ 1,000 annotation budget ©




Aim #2: Utilize existing annotation effectively from advanced architecture

Segmentation: Partition an image into multiple segments to ease the analysis
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Aim #2: Utilize existing annotation effectively from advanced architecture

Segmentation: Partition an image into multiple segments to ease the analysis

e.g., liver segmentation

)
U-Net .




Aim #2: Utilize existing annotation effectively from advanced architecture

Introduction

ey Hypothesis: Multi-scale feature aggregation leads to powerful models

Aim #2

U-Net
- [Olaf Ronneberger, et al., 2015]



Aim #2: Utilize existing annotation effectively from advanced architecture

Approach: Redesigned skip connections aggregate multi-scale features
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UNet++
[Zongwei Zhou, et al., 2018]



Aim #2: Utilize existing annotation effectively from advanced architecture

Approach: Deep supervision enables a higher segmentation accuracy

Introduction |
Conv 1x1 Conv 1x1 Con;1x1
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Aim #2: Utilize existing annotation effectively from advanced architecture

Contribution: UNet++ significantly improves disease/organ segmentation
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Z. Zhou, et al. UNet++: Redesigning Skip Connections to Exploit Multi-Resolution Features in Image Segmentation. IEEE Transactions on
Medical Imaging, 2020. (IF=7.82)
Z. Zhou, et al. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. DLMIA’18. (Oral)
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Aim #2: Utilize existing annotation effectively from advanced architecture

Approach: Deep supervision allows model pruning
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Aim #2: Utilize existing annotation effectively from advanced architecture

Contribution: Pruned UNet++ accelerates a computer reading medical images
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Z. Zhou, et al. UNet++: Redesigning Skip Connections to Exploit Multi-Resolution Features in Image Segmentation. IEEE Transactions on
Medical Imaging, 2020. (IF=7.82)
Z. Zhou, et al. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. DLMIA’18. (Oral)



Aim #2: Utilize existing annotation effectively from advanced architecture

Proposal: Optimize active learning by leveraging unique architectural design
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Aim #2: Utilize existing annotation effectively from advanced architecture

Proposal: Optimize active learning by leveraging unique architectural design
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Aim #3: Extract generic knowledge directly from unannotated images

Problem: Utilize 1,000,000 images without systematic annotation
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Aim #3: Extract generic knowledge directly from unannotated images

: Hypothesis: Generic models can be built upon consistent, recurrent anatomy
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Aim #3: Extract generic knowledge directly from unannotated images

Approach: Image restoration task helps model learn image representation
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Aim #3: Extract generic knowledge directly from unannotated images

Approach: Learning from multiple perspectives leads to robust models
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Aim #3: Extract generic knowledge directly from unannotated images

Contribution: Build generic pre-trained 3D models, named “Models Genesis”

Introduction

Models Genesis

Genesis Chest CT 2D Genesis Chest X-ray (2D)
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Z. Zhou, et al. Models Genesis. Submitted to Medical Image Analysis, 2020. (IF=8.88)
Z. Zhou, et al. Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis. MICCAI’19. (Oral; Young Scientist Award)



Aim #3: Extract generic knowledge directly from unannotated images

Contribution: Models Genesis exceed publicly available pre-trained 3D models

Introduction

Approach

Target tasks

Nce! (%) NCS~ (%) ECC’ (%) LCS* (%) BMS> (%)

Random with Uniform Init 94.74+1.97 75.48+0.43 80.36+3.58 78.68+4.23 60.79+1.60

Significance Random with Xavier Init (Glorot and Bengio, 2010) 94.25+5.07 74.05+1.97 79.99+8.06 77.82+3.87 58.52+2.61
Random with MSRA Init (He et al., 2015) 96.03+1.82 76.44+0.45 78.24+3.60 79.76+£5.43 63.00+1.73
I3D (Carreira and Zisserman, 2017) 98.26+0.27 71.58+0.55 80.55+1.11 70.65+4.26 67.83+0.75
NiftyNet (Gibson et al., 2018b) 94.14+4.57 52.98+2.05 77.33+8.05 83.23+1.05 60.78+1.60
MedicalNet (Chen et al., 2019b) 95.80+0.49 75.68+0.32 86.43+1.44  85.52+0.58" 66.09+1.35
De-noising (revised in 3D) (Vincent et al., 2010) 95.92+1.83 73.99+0.62 85.14+3.02 84.36+0.96 57.83+1.57
Patch shuffling (revised in 3D) (Chen et al., 2019a) 91.93+2.32 75.74+0.51 82.15+3.30 82.82+2.35 52.95+6.92
Rubik’s Cube (revised) (Zhuang et al., 2019) 96.24+1.27 72.87+0.16 80.49+4.64 719.5940.20 62.75+1.93
Genesis Chest CT (ours) 98.34+0.44 77.62+0.64 87.20+2.87 85.1052.15 67.96+1.29
INCC Lung nodule false positive reduction in CT images

Aim #3

’NCS Lung nodule segmentation in CT images
3ECC Pulmonary embolism false positive reduction in CT images
4L.CS Liver segmentation in CT images

summary >BMS Brain tumor segmentation in MR images

Z. Zhou, et al. Models Genesis. Submitted to Medical Image Analysis, 2020. (IF=8.88)
Z. Zhou, et al. Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis. MICCAI’19. (Oral; Young Scientist Award)
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Contribution: Models Genesis consistently top any 2D approaches

Aim #3: Extract generic knowledge directly from unannotated images
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Aim #3: Extract generic knowledge directly from unannotated images

Proposal: Extend to modality-oriented and organ-oriented models
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Aim #3: Extract generic knowledge directly from unannotated images

Proposal: Extend to modality-oriented and organ-oriented models
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Atelectasis Cardiomegaly Effusion Infiltration

Mass Nodule Pneumonia | Pneumothorax

$ 1,000 annotation budget ©

S 1,000,000 annotation cost ®

Research goal: Exploit novel methods to
minimize the manual labeling efforts for a
rapid, precise computer-aided diagnosis of
lung diseases

Aim #1: Acquire necessary annotation efficiently from
human experts

Aim #2: Utilize existing annotation effectively from
advanced architecture

Aim #3: Extract generic knowledge directly from
unannotated images



Atelectasis Cardiomegaly Effusion Infiltration

Mass Nodule Pneumonia | Pneumothorax

$ 1,000 annotation budget ©

S 1,000,000 annotation cost ®

Clinical application: COVID-19

Dataset: Consist of more than 200 positive patients and
thousands of negative patients, provided by Renmin
Hospital of Wuhan University

Goal: Create a reliable CAD system in a short span of
time for automated COVID-19 diagnosis



Acknowledgements

e Jianming Liang, Ph.D.
 Edward H. Shortliffe, M.D., Ph.D.
* Murthy Devarakonda, Ph.D.

Michael B. Gotway, M.D.

Cost-Effective Deep Learning in Medical Image Analysis

Zongwei Zhou

College of Health Solutions, Arizona State University
P: 1-(480)738-2575 | E: zongweiz@asu.edu



