Cost-Effective Deep Learning in Medical Image Analysis Zongwei Zhou College of Health Solutions, Arizona State University P: 1-(480)738-2575 | E: zongweiz@asu.edu # **REVIEW** Introduction Significance Aim #1 Aim #2 Aim #3 **Summary** # Deep learning Yann LeCun^{1,2}, Yoshua Bengio³ & Geoffrey Hinton^{4,5} # Advantages: Generalizable - Lung cancer - Skin cancer - Diabetic retinopathy # Barrier to medical imaging: Large annotation cost # Turing Award And \$1 Million Given To 3 AI Pioneers Nicole Martin Former Contributor ① Al & Big Data I write about digital marketing, data and privacy concerns. # LETTERS https://doi.org/10.1038/s41591-019-0447-x Corrected: Author Correction Introduction Significance Aim #1 Aim #2 Aim #3 **Summary** # End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography Diego Ardila^{1,5}, Atilla P. Kiraly^{1,5}, Sujeeth Bharadwaj^{1,5}, Bokyung Choi^{1,5}, Joshua J. Reicher², Lily Peng¹, Daniel Tse¹, Mozziyar Etemadi³, Wenxing Ye¹, Greg Corrado¹, David P. Naidich⁴ and Shravya Shetty¹ 42,290 CT images # LETTER Introduction Significance Aim #1 Aim #2 Aim #3 Summary # Dermatologist-level classification of skin cancer with deep neural networks Andre Esteva^{1*}, Brett Kuprel^{1*}, Roberto A. Novoa^{2,3}, Justin Ko², Susan M. Swetter^{2,4}, Helen M. Blau⁵ & Sebastian Thrun⁶ 129,450 clinical images Malignant Significance Aim #1 Aim #2 Aim #3 Summary Research #### JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY # Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs Varun Gulshan, PhD; Lily Peng, MD, PhD; Marc Coram, PhD; Martin C. Stumpe, PhD; Derek Wu, BS; Arunachalam Narayanaswamy, PhD; Subhashini Venugopalan, MS; Kasumi Widner, MS; Tom Madams, MEng; Jorge Cuadros, OD, PhD; Ramasamy Kim, OD, DNB; Rajiv Raman, MS, DNB; Philip C. Nelson, BS; Jessica L. Mega, MD, MPH; Dale R. Webster, PhD 128,175 retinal images Significance Aim #1 Aim #2 Aim #3 Summary COVID-19? How to develop an effective deep learning algorithms for those diseases that have no such labeled big data? # Quickly develop an effective computer-aided diagnosis system is important - A flood of patients are pending during an outbreak - Doctors do not have time to annotate every case - Not many doctors have expertise for novel diseases #### Significance Aim #1 Aim #2 Aim #3 Significance Aim #1 Aim #2 Aim #3 Summary Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise computer-aided diagnosis system Aim #1: Acquire necessary annotation efficiently from human experts Aim #2: Utilize existing annotation effectively from advanced architecture Aim #3: Extract generic knowledge directly from unannotated images Significance Aim #1 Aim #2 Aim #3 Summary Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise computer-aided diagnosis system Aim #1: Acquire necessary annotation efficiently from human experts Aim #2: Utilize existing annotation effectively from advanced architecture Aim #3: Extract generic knowledge directly from unannotated images Polyp detection Neuronal structure segmentation Brain/tumor segmentation Lung nodule detection Cell/nuclei segmentation Kidney/lesion segmentation Pulmonary embolism detection Liver/lesion segmentation Pulmonary diseases classification Problem: Find the most important 1,000 images from 1,000,000 images Introduction Significance Aim #1 Aim #2 Aim #3 Summary #### \$1 per subject \$ 1,000 annotation budget © \$ 1,000,000 annotation cost 🕾 Approach: "Human-in-the-loop" active learning procedure Introduction Significance Aim #1 Aim #2 Aim #3 Summary Pre-trained models Approach: "Human-in-the-loop" active learning procedure Introduction Significance Aim #1 Aim #2 Aim #3 Approach: "Human-in-the-loop" active learning procedure Introduction Significance Aim #1 Aim #2 Aim #3 Approach: "Human-in-the-loop" active learning procedure Introduction Significance Aim #1 Aim #2 Aim #3 Approach: "Human-in-the-loop" active learning procedure Introduction Significance Aim #1 Aim #2 Aim #3 Approach: "Human-in-the-loop" active learning procedure Introduction Significance Aim #1 Aim #2 Aim #3 Approach: "Human-in-the-loop" active learning procedure Introduction Significance Aim #1 Aim #2 Aim #3 Summary Select the most important samples Approach: "Human-in-the-loop" active learning procedure Introduction Significance Aim #1 Aim #2 Aim #3 Summary Select the most important samples Approach: "Human-in-the-loop" active learning procedure Introduction Significance Aim #1 Aim #2 Aim #3 Summary Select the most important samples Approach: "Human-in-the-loop" active learning procedure Introduction Significance Aim #1 Aim #2 Aim #3 Summary Select the most important samples Hypothesis: Wisely selecting important samples can reduce annotation cost Introduction Significance Aim #1 Aim #2 Aim #3 Contribution: Reduce annotation cost by >60% compared to random selection Introduction Significance Aim #1 Aim #2 Aim #3 - <u>Z. Zhou</u>, et al. Integrating Active Learning and Transfer Learning for Carotid Intima-Media Thickness Video Interpretation. *Journal of Digital Imaging*, 2019. (IF=2.57) - <u>Z. Zhou</u>, et al. Active Fine Tuning of Convolutional Neural Networks for Reducing Annotation Efforts. Submitted to *Medical Image Analysis*. (IF=8.88) - Z. Zhou, et al. Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally. CVPR'17. Proposal: Iteratively suggest important samples at the patient-level Introduction Significance Aim #1 Aim #2 Aim #3 **Summary** Lesion-level annotation #### Drawbacks: Experts must annotate the same patient multiple times Proposal: Iteratively suggest important samples at the patient-level Introduction Significance Aim #1 Aim #2 Aim #3 Lesion-level annotation Patient-level annotation **Problem:** Enhance the architecture for modeling 1,000 annotated images Introduction Significance Aim #1 Aim #2 Aim #3 \$ 1,000 annotation budget © Segmentation: Partition an image into multiple segments to ease the analysis Introduction Significance Aim #1 Aim #2 Aim #3 Segmentation: Partition an image into multiple segments to ease the analysis Introduction Significance Aim #1 Aim #2 Aim #3 e.g., liver segmentation Hypothesis: Multi-scale feature aggregation leads to powerful models Introduction Significance Aim #1 Aim #2 Aim #3 Approach: Redesigned skip connections aggregate multi-scale features Introduction Significance Aim #1 Aim #2 Aim #3 Summary [Zongwei Zhou, et al., 2018] Approach: Deep supervision enables a higher segmentation accuracy Introduction Significance Aim #1 Aim #2 Aim #3 Contribution: UNet++ significantly improves disease/organ segmentation Introduction Significance Aim #1 Aim #2 Aim #3 - <u>Z. Zhou</u>, et al. UNet++: Redesigning Skip Connections to Exploit Multi-Resolution Features in Image Segmentation. IEEE Transactions on Medical Imaging, 2020. (IF=7.82) - Z. Zhou, et al. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. DLMIA'18. (Oral) Approach: Deep supervision allows model pruning Introduction Significance Aim #1 Aim #2 Aim #3 **Contribution:** Pruned UNet++ accelerates a computer reading medical images Introduction Significance Aim #1 Aim #2 Aim #3 - <u>Z. Zhou</u>, et al. UNet++: Redesigning Skip Connections to Exploit Multi-Resolution Features in Image Segmentation. IEEE Transactions on Medical Imaging, 2020. (IF=7.82) - Z. Zhou, et al. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. DLMIA'18. (Oral) Proposal: Optimize active learning by leveraging unique architectural design Introduction Significance Aim #1 Aim #2 Aim #3 Proposal: Optimize active learning by leveraging unique architectural design Introduction Significance Aim #1 Aim #2 Aim #3 Problem: Utilize 1,000,000 images without systematic annotation Introduction Significance Aim #1 Aim #2 Aim #3 \$ 100 annotation budget © Hypothesis: Generic models can be built upon consistent, recurrent anatomy #### Introduction Significance Aim #1 Aim #2 Aim #3 Approach: Image restoration task helps model learn image representation Introduction Significance Aim #1 Aim #2 Aim #3 Approach: Learning from multiple perspectives leads to robust models Introduction Significance Aim #1 Aim #2 Aim #3 Contribution: Build generic pre-trained 3D models, named "Models Genesis" Introduction Significance Aim #1 Aim #2 Aim #3 - Z. Zhou, et al. Models Genesis. Submitted to Medical Image Analysis, 2020. (IF=8.88) - Z. Zhou, et al. Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis. MICCAI'19. (Oral; Young Scientist Award) Contribution: Models Genesis exceed publicly available pre-trained 3D models | Intr | α | こしても | n | |------|----------|--------------|---| | | OU. | ulul | ш | | | ~ ~ | G G G | | Significance Aim #1 Aim #2 Aim #3 Summary | Target tasks | | | | | |------------------|--|---|---|--| | NCC^1 (%) | $\mathtt{NCS}^2\left(\%\right)$ | ECC^3 (%) | LCS ⁴ (%) | BMS^5 (%) | | 94.74±1.97 | 75.48±0.43 | 80.36±3.58 | 78.68±4.23 | 60.79±1.60 | | 94.25 ± 5.07 | 74.05 ± 1.97 | 79.99 ± 8.06 | 77.82 ± 3.87 | 58.52 ± 2.61 | | 96.03 ± 1.82 | 76.44 ± 0.45 | 78.24 ± 3.60 | 79.76 ± 5.43 | 63.00 ± 1.73 | | 98.26±0.27 | 71.58±0.55 | 80.55±1.11 | 70.65±4.26 | 67.83±0.75 | | 94.14±4.57 | 52.98 ± 2.05 | 77.33 ± 8.05 | 83.23 ± 1.05 | 60.78 ± 1.60 | | 95.80 ± 0.49 | 75.68 ± 0.32 | 86.43±1.44 | $85.52 \pm 0.58^{\dagger}$ | 66.09 ± 1.35 | | 95.92±1.83 | 73.99±0.62 | 85.14±3.02 | 84.36±0.96 | 57.83±1.57 | | 91.93 ± 2.32 | 75.74 ± 0.51 | 82.15±3.30 | 82.82 ± 2.35 | 52.95 ± 6.92 | | 96.24 ± 1.27 | 72.87 ± 0.16 | 80.49 ± 4.64 | 75.59 ± 0.20 | 62.75 ± 1.93 | | 98.34±0.44 | 77.62 ± 0.64 | 87.20 ± 2.87 | 85.10±2.15 | 67.96±1.29 | | | 94.74±1.97
94.25±5.07
96.03±1.82
98.26±0.27
94.14±4.57
95.80±0.49
95.92±1.83
91.93±2.32
96.24±1.27 | 94.74±1.97 75.48±0.43
94.25±5.07 74.05±1.97
96.03±1.82 76.44±0.45
98.26±0.27 71.58±0.55
94.14±4.57 52.98±2.05
95.80±0.49 75.68±0.32
95.92±1.83 73.99±0.62
91.93±2.32 75.74±0.51
96.24±1.27 72.87±0.16 | NCC1 (%)NCS2 (%)ECC3 (%) 94.74 ± 1.97 75.48 ± 0.43 80.36 ± 3.58 94.25 ± 5.07 74.05 ± 1.97 79.99 ± 8.06 96.03 ± 1.82 76.44 ± 0.45 78.24 ± 3.60 98.26 ± 0.27 71.58 ± 0.55 80.55 ± 1.11 94.14 ± 4.57 52.98 ± 2.05 77.33 ± 8.05 95.80 ± 0.49 75.68 ± 0.32 86.43 ± 1.44 95.92 ± 1.83 73.99 ± 0.62 85.14 ± 3.02 91.93 ± 2.32 75.74 ± 0.51 82.15 ± 3.30 96.24 ± 1.27 72.87 ± 0.16 80.49 ± 4.64 | NCC1 (%)NCS2 (%)ECC3 (%)LCS4 (%) 94.74 ± 1.97 75.48 ± 0.43 80.36 ± 3.58 78.68 ± 4.23 94.25 ± 5.07 74.05 ± 1.97 79.99 ± 8.06 77.82 ± 3.87 96.03 ± 1.82 76.44 ± 0.45 78.24 ± 3.60 79.76 ± 5.43 98.26 ± 0.27 71.58 ± 0.55 80.55 ± 1.11 70.65 ± 4.26 94.14 ± 4.57 52.98 ± 2.05 77.33 ± 8.05 83.23 ± 1.05 95.80 ± 0.49 75.68 ± 0.32 86.43 ± 1.44 $85.52\pm0.58^{\dagger}$ 95.92 ± 1.83 73.99 ± 0.62 85.14 ± 3.02 84.36 ± 0.96 91.93 ± 2.32 75.74 ± 0.51 82.15 ± 3.30 82.82 ± 2.35 96.24 ± 1.27 72.87 ± 0.16 80.49 ± 4.64 75.59 ± 0.20 | | ¹ NCC | Lung nodule false positive reduction in CT images | |------------------|---| | _ | | ²NCS Lung nodule segmentation in CT images ³ECC Pulmonary embolism false positive reduction in CT images ⁴LCS Liver segmentation in CT images ⁵BMS Brain tumor segmentation in MR images Target models - <u>Z. Zhou</u>, et al. Models Genesis. Submitted to *Medical Image Analysis*, 2020. (IF=8.88) - Z. Zhou, et al. Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis. MICCAI'19. (Oral; Young Scientist Award) **Genesis Chest CT** Contribution: Models Genesis consistently top any 2D approaches Introduction Significance Aim #1 Aim #2 Aim #3 - <u>Z. Zhou</u>, et al. Models Genesis. Submitted to *Medical Image Analysis*, 2020. (IF=8.88) - Z. Zhou, et al. Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis. MICCAI'19. (Oral; Young Scientist Award) Proposal: Extend to modality-oriented and organ-oriented models Introduction Significance Aim #1 Aim #2 Aim #3 **Proposal:** Extend to modality-oriented and organ-oriented models Introduction Significance Aim #1 Aim #2 Aim #3 Significance Aim #1 Aim #2 Aim #3 Summary \$ 1,000,000 annotation cost (8) Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise computer-aided diagnosis of lung diseases **Aim #1:** Acquire necessary annotation efficiently from human experts Aim #2: Utilize existing annotation effectively from advanced architecture Aim #3: Extract generic knowledge directly from unannotated images Significance Aim #1 Aim #2 Aim #3 Summary \$ 1,000,000 annotation cost (8) Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise computer-aided diagnosis of lung diseases Aim #1: Acquire necessary annotation efficiently from human experts Aim #2: Utilize existing annotation effectively from advanced architecture Aim #3: Extract generic knowledge directly from unannotated images ### Clinical application: COVID-19 **Dataset:** Consist of more than 200 positive patients and thousands of negative patients, provided by Renmin Hospital of Wuhan University **Goal:** Create a reliable CAD system in a short span of time for automated COVID-19 diagnosis #### Acknowledgements - Jianming Liang, Ph.D. - Edward H. Shortliffe, M.D., Ph.D. - Murthy Devarakonda, Ph.D. - Michael B. Gotway, M.D. # Cost-Effective Deep Learning in Medical Image Analysis Zongwei Zhou College of Health Solutions, Arizona State University P: 1-(480)738-2575 | E: zongweiz@asu.edu