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Deep Learning propels us into the so-called artificial intelligence (Al) era
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Imaging data account for about 90% of all healthcare data




Deep Learning works well in medical imaging, but it demands massive annotation costs.

To match human diagnostic precision, deep learning algorithms require

* 42,290 radiologist-labeled CT images for lung cancer diagnosis
Introducti
niroduction e 128,175 ophthalmologist-labeled retinal images for diabetic retinopathy detection

e 129,450 dermatologist-labeled images for skin cancer classification
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How to develop cost-effective deep learning algorithms for those diseases that have no such
labeled big data?

Consider the scenarios as follows:

 Aflood of patients are pending during an outbreak
e Doctors do not have time to annotate every case

* Not many doctors have expertise for novel diseases

Computer-aided diagnosis of rare diseases or rapid response to global pandemics are severely
under-explored owing to the difficulty of collecting a sizeable amount labeled data.




Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise
computer-aided diagnosis system
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Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise
computer-aided diagnosis system

Aim #1: Acquiring necessary annotation efficiently from human experts
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Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise
computer-aided diagnosis system

Aim #1: Acquiring necessary annotation efficiently from human experts

Introduction Aim #2: Utilizing existing annotation effectively from advanced architecture
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Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise
computer-aided diagnosis system

Aim #1: Acquiring necessary annotation efficiently from human experts
Aim #2: Utilizing existing annotation effectively from advanced architecture

Aim #3: Extracting generic knowledge directly from unannotated images

$1,000,000 annotation cost ®
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Generalizable and transferable image representation
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Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise
computer-aided diagnosis system

Aim #1: Acquiring necessary annotation efficiently from human experts

Aim #2: Utilizing existing annotation effectively from advanced architecture

Aim #3: Extracting generic knowledge directly from unannotated images
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Aim #1: Acquiring necessary annotation efficiently from human experts

Problem: Find the most important 1,000 images from 1,000,000 images
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Aim #1: Acquiring necessary annotation efficiently from human experts

Approach: “Human-in-the-loop” active learning procedure
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Aim #1: Acquiring necessary annotation efficiently from human experts

Approach: “Human-in-the-loop” active learning procedure
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Aim #1: Acquiring necessary annotation efficiently from human experts

Approach: “Human-in-the-loop” active learning procedure
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Aim #1: Acquiring necessary annotation efficiently from human experts

Approach: “Human-in-the-loop” active learning procedure
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Aim #1: Acquiring necessary annotation efficiently from human experts

Approach: “Human-in-the-loop” active learning procedure
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Aim #1: Acquiring necessary annotation efficiently from human experts

Approach: “Human-in-the-loop” active learning procedure
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Aim #1: Acquiring necessary annotation efficiently from human experts

Approach: Active, Continual Fine-Tuning
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Aim #1: Acquiring necessary annotation efficiently from human experts

Approach: Active, Continual Fine-Tuning

Introduction

Data augmentation _
Entropy
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Aim #1

To boost the performance of CNNs, multiple patches are usually
generated for each image via data augmentation; these patches
generated from the same image share the same label, and are
naturally expected to have similar predictions by the current CNN.




Aim #1: Acquiring necessary annotation efficiently from human experts

Hypothesis: Wisely selecting important samples can reduce annotation cost
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Aim #1: Acquiring necessary annotation efficiently from human experts

Contribution: Reduce annotation cost by >60% compared to random selection
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Aim #1: Acquiring necessary annotation efficiently from human experts

Proposal: Iteratively suggest important samples at the patient-level
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Aim #1: Acquiring necessary annotation efficiently from human experts

Proposal: Iteratively suggest important samples at the patient-level
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Not All Data Is Created Equal

Featured Publications for Aim #1:

1. Z.Zhou, J. Shin, L. Zhang, S. Gurudu, M. Gotway, J. Liang, 2017. Fine-tuning Convolutional Neural
Networks for Biomedical Image Analysis: Actively and Incrementally. CVPR'17, one of only five papers
in biomedical imaging accepted by CVPR'17.

2. Z.Zhou, J. Shin, R. Feng, R. Hurst, C. Kendall, J. Liang, 2019. Integrating Active Learning and Transfer
Learning for Carotid Intima-Media Thickness Video Interpretation. Journal of Digital Imaging.

3. Z.Zhou, J. Shin, S. Gurudu, M. Gotway, J. Liang, 2020. Active, Continual Fine Tuning of Convolutional
Neural Networks for Reducing Annotation Efforts. Submitted to Medical Image Analysis.



Not All Data Is Created Equal

Clinical Impacts of Aim #1.:

1. The continual learning capability of of deep models encourages data, label, and model reuse.
2. An efficient “human-in-the-loop” procedure assists radiologists in quickly dismissing patients with
negative results, therefore dramatically reducing the burden of annotation.

3. Aninstant on-line feedback process makes it possible for CAD systems to be self-learning and self-
improving via continual fine-tuning.



Aim #2: Utilizing existing annotation effectively from advanced architecture

Problem: Enhance the architecture for modeling 1,000 annotated images
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Aim #2: Utilizing existing annotation effectively from advanced architecture

Segmentation: Partition an image into multiple segments to ease the analysis
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Aim #2: Utilizing existing annotation effectively from advanced architecture

Hypothesis: Multi-scale feature aggregation leads to powerful models
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Aim #2: Utilizing existing annotation effectively from advanced architecture

Approach: Redesigned skip connections aggregate multi-scale features
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Aim #2: Utilizing existing annotation effectively from advanced architecture

Approach: Deep supervision enables a higher segmentation accuracy
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Aim #2: Utilizing existing annotation effectively from advanced architecture

Approach: Deep supervision enables a higher segmentation accuracy
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Aim #2: Utilizing existing annotation effectively from advanced architecture

Contribution: UNet++ significantly improves disease/organ segmentation
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Aim #2: Utilizing existing annotation effectively from advanced architecture

Proposal: Optimize active learning by leveraging unique architectural design
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Aim #2: Utilizing existing annotation effectively from advanced architecture

Proposal: Optimize active learning by leveraging unique architectural design
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Intertwine the visual representation

Featured Publications for Aim #2:

1. Z.Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, J. Liang, 2019. UNet++: Redesigning Skip Connections
to Exploit Multi-Resolution Features in Image Segmentation. [EEE Transactions on Medical Imaging,
IEEE TMI most popular articles.

2. Z.Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, J. Liang, 2018. UNet++: A Nested U-Net Architecture
for Medical Image Segmentation. DLMIA"18.



Intertwine the visual representation

Clinical Impacts of Aim #2:

1. Image segmentation can help compute clinically more accurate and desirable imaging bio-markers or
precision measurement.

2. Model pruning has the potential to exert important impact on deploying computer-aided diagnosis
(CAD) to mobile devices and ordinary desktop/laptop PCs in clinical practice.



Aim #3

Aim #3: Extracting generic knowledge directly from unannotated images

Problem: Utilize 1,000,000 images without systematic annotation
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Aim #3: Extracting generic knowledge directly from unannotated images

Hypothesis: Generic models can be built upon consistent, recurrent anatomy
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Aim #3: Extracting generic knowledge directly from unannotated images

Approach: Image restoration task helps model learn image representation
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Aim #3: Extracting generic knowledge directly from unannotated images

Approach: Learning from multiple perspectives leads to robust models
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Aim #3: Extracting generic knowledge directly from unannotated images

Contribution: Build generic pre-trained 3D models, named “Models Genesis”

Models Genesis

Genesis Chest CT 2D Genesis Chest X-ray (2D)
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Aim #3
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1. Zhou, Zongwei, et al. "Models genesis: Generic autodidactic models for 3d medical image analysis." International Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer, Cham, 2019.
2. Zhou, Zongwei, et al. "Models Genesis." arXiv preprint arXiv:2004.07882 (2020).
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Aim #3: Extracting generic knowledge directly from unannotated images

Contribution: Models Genesis exceed publicly available pre-trained 3D models

b Target tasks

Pre-guinmg Approgeh NCCT (%) NCSZ (%) ECC? (%) LCS* (%) BMS’ (%)
Random with Uniform Init 94.74+1.97 75.48+0.43 80.36+3.58 78.68+4.23 60.79+1.60

No Random with Xavier Init (Glorot and Bengio, 2010) 94.25+5.07 74.05+1.97 79.99+8.06 77.82+3.87 58.52+2.61
Random with MSRA Init (He et al., 2015) 96.03+1.82 76.44+0.45 78.24+3.60 79.76+5.43 63.00+1.73
I3D (Carreira and Zisserman, 2017) 98.26+0.27 71.58+0.55 80.55+1.11 70.65+4.26 67.83+0.75

(Fully) supervised NiftyNet (Gibson et al., 2018b) 94.14+4.57 52.98+2.05 77.33+8.05 83.23+1.05 60.78+1.60
MedicalNet (Chen et al., 2019b) 95.80+0.49 75.68+0.32 86.43+1.44 85.52+0.58" 66.09+1.35
De-noising (Vincent et al., 2010) 95.92+1.83 73.99+0.62 85.14+3.02 84.36+0.96 57.83+1.57
In-painting (Pathak et al., 2016) 91.46+2.97 76.02+0.55 79.79%3.55 81.36+4.83 61.38+3.84
Jigsaw (Noroozi and Favaro, 2016) 95.47+1.24 70.90+1.55 81.79+1.04 82.04+1.26 63.33+1.11

Self-supervised DeepCluster (Caron et al., 2018) 97.22+0.55 74.95+0.46 84.82+0.62 82.66+1.00 65.96+0.85
Patch shuffling (Chen et al., 2019a) 91.93+2.32 75.74+0.51 82.15+3.30 82.82+2.35 52.95+6.92
Rubiks Cube (Zhuang et al., 2019) 96.24+1.27 72.87+0.16 80.49+4.64 75.59+0.20 62.75%1.93
Genesis Chest CT (ours) 98.34+0.44 77.62+0.64 87.20+2.87 85.10+2.15 67.96+1.29

INCC Lung nodule false positive reduction in CT images

’NCS Lung nodule segmentation in CT images

3ECC Pulmonary embolism false positive reduction in CT images

4L.CS Liver segmentation in CT images

>BMS Brain tumor segmentation in MR images Genesis Chest CT




Aim #3: Extracting generic knowledge directly from unannotated images

Contribution: Models Genesis reduce annotation efforts by at least 30%
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’NCS Lung nodule segmentation in CT images
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4L.CS Liver segmentation in CT images
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Aim #3: Extracting generic knowledge directly from unannotated images

Proposal: Extend to modality-oriented and organ-oriented models
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Holy Grail: effective across diseases, organs, and modalities.

Featured Publications for Aim #3:

1. Z.Zhou, V. Sodha, M. M. Rahman Siddiquee, R. Feng, N. Tajbakhsh, M. Gotway, J. Liang, 2019. Models
Genesis: Generic Autodidactic Models for 3D Medical Image Analysis. MICCAI'19, Young Scientist
Award, Best Presentation Award Finalist.

2. Z.Zhou, V.Sodha, J. Pang, M. Gotway, J. Liang, 2020. Models Genesis. Medical Image Analysis, MedIA
Best Paper Award.



Holy Grail: effective across diseases, organs, and modalities.

Clinical Impacts of Aim #3:

1.  Transfer learning can greatly reduce the cost and effort required to build a dataset and retrain the
model. Instead of building a model from scratch (demanding numerous data acquisition and
annotation), a smaller dataset can be used to efficiently fine-tune the existing model.

Generic pre-trained models can serve as a primary source of transfer learning for many medical
imaging applications, leading to accelerated training and improved performance.
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Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise
computer-aided diagnosis system

Aim #1: Acquiring necessary annotation efficiently from human experts
Aim #2: Utilizing existing annotation effectively from advanced architecture

Aim #3: Extracting generic knowledge directly from unannotated images
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