

Annotation-efficient Deep Learning for Computer-aided Diagnosis in Medical Imaging

Zongwei Zhou

Ph.D. Candidate, Biomedical Informatics College of Health Solutions, Arizona State University P: 1-(480)738-2575 | E: zongweiz@asu.edu

Objective

Aim #1

Aim #2

Aim #3

Summary

Deep Learning propels us into the so-called artificial intelligence (AI) era

Imaging data account for about 90% of all healthcare data

- 1. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature 521.7553 (2015): 436-444
- 2. "The Digital Universe Driving Data Growth in Healthcare." published by EMC with research and analysis from IDC (12/13)

Objective

Aim #1

Aim #2

Aim #3

Summary

Deep Learning works well in medical imaging, but it demands massive annotation costs.

To match human diagnostic precision, deep learning algorithms require

- 42,290 radiologist-labeled CT images for lung cancer diagnosis
- 128,175 ophthalmologist-labeled retinal images for diabetic retinopathy detection
- 129,450 dermatologist-labeled images for skin cancer classification

- 1. Ardila, Diego, et al. "End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography." Nature medicine 25.6 (2019): 954-961.
- 2. Gulshan, Varun, et al. "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs." Jama 316.22 (2016): 2402-2410.
- 3. Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks." nature 542.7639 (2017): 115-118.

Objective

Aim #1

Aim #2

Aim #3

Summary

Deep Learning works well in medical imaging, but it demands massive annotation costs.

To match human diagnostic precision, deep learning algorithms require

- 42,290 radiologist-labeled CT images for lung cancer diagnosis
- 128,175 ophthalmologist-labeled retinal images for diabetic retinopathy detection
- 129,450 dermatologist-labeled images for skin cancer classification

How to develop cost-effective deep learning algorithms for those diseases that have no such labeled big data?

Consider the scenarios as follows:

- A flood of patients are pending during an outbreak
- Doctors do not have time to annotate every case
- Not many doctors have expertise for novel diseases

Computer-aided diagnosis of <u>rare diseases</u> or rapid response to <u>global pandemics</u> are severely under-explored owing to the difficulty of collecting a sizeable amount labeled data.

Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise computer-aided diagnosis system

Introduction

Objective

Aim #1

Aim #2

Aim #3

Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise computer-aided diagnosis system

Aim #1: Acquiring necessary annotation efficiently from human experts

Objective

Aim #1

Aim #2

Aim #3

Objective

Aim #1

Aim #2

Aim #3

Summary

Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise computer-aided diagnosis system

Aim #1: Acquiring necessary annotation efficiently from human experts

Aim #2: Utilizing existing annotation effectively from advanced architecture

Objective

Aim #1

Aim #2

Aim #3

Summary

Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise computer-aided diagnosis system

Aim #1: Acquiring necessary annotation efficiently from human experts

Aim #2: Utilizing existing annotation effectively from advanced architecture

Aim #3: Extracting generic knowledge directly from unannotated images

Objective

Aim #1

Aim #2

Aim #3

Summary

Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise computer-aided diagnosis system

Aim #1: Acquiring necessary annotation efficiently from human experts

Aim #2: Utilizing existing annotation effectively from advanced architecture

Aim #3: Extracting generic knowledge directly from unannotated images

Polyp detection

Lung nodule detection

Cell/nuclei segmentation

Kidney/lesion segmentation

Pulmonary embolism detection

Liver/lesion segmentation

Pulmonary diseases classification

Neuronal structure segmentation

Brain/tumor segmentation

Problem: Find the most important 1,000 images from 1,000,000 images

Introduction

Objective

Aim #1

Aim #2

Aim #3

\$ 1,000 annotation budget ©

Approach: "Human-in-the-loop" active learning procedure

Introduction

Objective

Aim #1

Aim #2

Aim #3

Approach: "Human-in-the-loop" active learning procedure

Introduction

Objective

Aim #1

Aim #2

Aim #3

Approach: "Human-in-the-loop" active learning procedure

Introduction

Objective

Aim #1

Aim #2

Aim #3

Approach: "Human-in-the-loop" active learning procedure

Introduction

Objective

Aim #1

Aim #2

Aim #3

Summary

Select the most important samples

Approach: "Human-in-the-loop" active learning procedure

Introduction

Objective

Aim #1

Aim #2

Aim #3

Summary

Select the most important samples

Approach: "Human-in-the-loop" active learning procedure

Introduction

Objective

Aim #1

Aim #2

Aim #3

Summary

Select the most important samples

Approach: "Human-in-the-loop" active learning procedure

Introduction

Objective

Aim #1

Aim #2

Aim #3

Summary

Select the most important samples

Approach: Active, Continual Fine-Tuning

Introduction

Objective

Aim #1

Aim #2

Aim #3

Approach: Active, Continual Fine-Tuning

Introduction

Objective

Aim #1

Aim #2

Aim #3

Summary

To boost the performance of CNNs, multiple patches are usually generated for each image via **data augmentation**; these patches generated from the same image share the **same label**, and are naturally expected to have **similar predictions** by the current CNN.

Hypothesis: Wisely selecting important samples can reduce annotation cost

Introduction

Objective

Aim #1

Aim #2

Aim #3

Contribution: Reduce annotation cost by >60% compared to random selection

Introduction

Objective

Aim #1

Aim #2

Aim #3

- 1. Zhou, Zongwei, et al. "Integrating active learning and transfer learning for carotid intima-media thickness video interpretation." Journal of digital imaging 32.2 (2019): 290-299.
- 2. Zhou, Zongwei, et al. "Active, Continual Fine Tuning of Convolutional Neural Networks for Reducing Annotation Efforts." arXiv preprint arXiv:1802.00912 (2018).
- 3. Zhou, Zongwei, et al. "Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

Proposal: Iteratively suggest important samples at the patient-level

Introduction

Objective

Aim #1

Aim #2

Aim #3

Summary

Lesion-level annotation

Drawbacks:

Experts must annotate the same patient multiple times

Proposal: Iteratively suggest important samples at the patient-level

Introduction

Objective

Aim #1

Aim #2

Aim #3

Lesion-level annotation

Patient-level annotation

Not All Data Is Created Equal

Featured Publications for Aim #1:

- 1. Z. Zhou, J. Shin, L. Zhang, S. Gurudu, M. Gotway, J. Liang, 2017. Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally. CVPR'17, one of only five papers in biomedical imaging accepted by CVPR'17.
- 2. Z. Zhou, J. Shin, R. Feng, R. Hurst, C. Kendall, J. Liang, 2019. Integrating Active Learning and Transfer Learning for Carotid Intima-Media Thickness Video Interpretation. Journal of Digital Imaging.
- 3. Z. Zhou, J. Shin, S. Gurudu, M. Gotway, J. Liang, 2020. Active, Continual Fine Tuning of Convolutional Neural Networks for Reducing Annotation Efforts. Submitted to Medical Image Analysis.

Not All Data Is Created Equal

Clinical Impacts of Aim #1:

- 1. The continual learning capability of of deep models encourages data, label, and model reuse.
- 2. An efficient "human-in-the-loop" procedure assists radiologists in quickly dismissing patients with negative results, therefore dramatically reducing the burden of annotation.
- 3. An instant on-line feedback process makes it possible for CAD systems to be self-learning and self-improving via continual fine-tuning.

Problem: Enhance the architecture for modeling 1,000 annotated images

Introduction

Objective

Aim #1

Aim #2

Aim #3

\$ 1,000 annotation budget ©

Segmentation: Partition an image into multiple segments to ease the analysis

Introduction

Objective

Aim #1

Aim #2

Aim #3

e.g., liver & lesion segmentation

Hypothesis: Multi-scale feature aggregation leads to powerful models

Introduction

Objective

Aim #1

Aim #2

Aim #3

^{1.} Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.

Approach: Redesigned skip connections aggregate multi-scale features

Introduction

Objective

Aim #1

Aim #2

Aim #3

^{1.} Zhou, Zongwei, et al. "Unet++: A nested u-net architecture for medical image segmentation." Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, Cham, 2018. 3-11.

Approach: Deep supervision enables a higher segmentation accuracy

Introduction

Objective

Aim #1

Aim #2

Aim #3

^{1.} Zhou, Zongwei, et al. "Unet++: A nested u-net architecture for medical image segmentation." Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, Cham, 2018. 3-11.

Approach: Deep supervision enables a higher segmentation accuracy

Introduction

Objective

Aim #1

Aim #2

Aim #3

^{1.} Zhou, Zongwei, et al. "Unet++: A nested u-net architecture for medical image segmentation." Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, Cham, 2018. 3-11.

Contribution: UNet++ significantly improves disease/organ segmentation

Introduction

Objective

Aim #1

Aim #2

Aim #3

- 1. Zhou, Zongwei, et al. "Unet++: A nested u-net architecture for medical image segmentation." Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, Cham, 2018. 3-11.
- 2. Zhou, Zongwei, et al. "Unet++: Redesigning skip connections to exploit multiscale features in image segmentation." IEEE transactions on medical imaging 39.6 (2019): 1856-1867.

Proposal: Optimize active learning by leveraging unique architectural design

Introduction

Objective

Aim #1

Aim #2

Aim #3

Proposal: Optimize active learning by leveraging unique architectural design

Introduction

Objective

Aim #1

Aim #2

Aim #3

Intertwine the visual representation

Featured Publications for Aim #2:

- 1. Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, J. Liang, 2019. UNet++: Redesigning Skip Connections to Exploit Multi-Resolution Features in Image Segmentation. IEEE Transactions on Medical Imaging, IEEE TMI most popular articles.
- 2. Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, J. Liang, 2018. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. DLMIA'18.

Intertwine the visual representation

Clinical Impacts of Aim #2:

- 1. Image segmentation can help compute clinically more accurate and desirable imaging bio-markers or precision measurement.
- 2. Model pruning has the potential to exert important impact on deploying computer-aided diagnosis (CAD) to mobile devices and ordinary desktop/laptop PCs in clinical practice.

Problem: Utilize 1,000,000 images without systematic annotation

Introduction

Objective

Aim #1

Aim #2

Aim #3

\$ 1,000 annotation budget ©

Hypothesis: Generic models can be built upon consistent, recurrent anatomy

Introduction

Objective

Aim #1

Aim #2

Aim #3

Approach: Image restoration task helps model learn image representation

Introduction

Objective

Aim #1

Aim #2

Aim #3

Approach: Learning from multiple perspectives leads to robust models

Introduction

Objective

Aim #1

Aim #2

Aim #3

Contribution: Build generic pre-trained 3D models, named "Models Genesis"

Introduction

Objective

Aim #1

Aim #2

Aim #3

Summary

Models Genesis

- 1. Zhou, Zongwei, et al. "Models genesis: Generic autodidactic models for 3d medical image analysis." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2019.
- 2. Zhou, Zongwei, et al. "Models Genesis." arXiv preprint arXiv:2004.07882 (2020).

Contribution: Models Genesis exceed publicly available pre-trained 3D models

Introduction

Objective

Aim #1

Aim #2

Aim #3

Summary

Pre-training	Approach	Target tasks				
		NCC1 (%)	NCS^2 (%)	ECC ³ (%)	LCS ⁴ (%)	BMS ⁵ (%)
No	Random with Uniform Init	94.74±1.97	75.48±0.43	80.36±3.58	78.68±4.23	60.79±1.60
	Random with Xavier Init (Glorot and Bengio, 2010)	94.25±5.07	74.05 ± 1.97	79.99±8.06	77.82 ± 3.87	58.52±2.61
	Random with MSRA Init (He et al., 2015)	96.03±1.82	76.44 ± 0.45	78.24±3.60	79.76±5.43	63.00±1.73
(Fully) supervised	I3D (Carreira and Zisserman, 2017)	98.26±0.27	71.58±0.55	80.55±1.11	70.65±4.26	67.83±0.75
	NiftyNet (Gibson et al., 2018b)	94.14±4.57	52.98±2.05	77.33 ± 8.05	83.23 ± 1.05	60.78±1.60
	MedicalNet (Chen et al., 2019b)	95.80±0.49	75.68 ± 0.32	86.43±1.44	$85.52 \pm 0.58^{\dagger}$	66.09±1.35
Self-supervised	De-noising (Vincent et al., 2010)	95.92±1.83	73.99±0.62	85.14±3.02	84.36±0.96	57.83±1.57
	In-painting (Pathak et al., 2016)	91.46±2.97	76.02 ± 0.55	79.79±3.55	81.36±4.83	61.38±3.84
	Jigsaw (Noroozi and Favaro, 2016)	95.47±1.24	70.90 ± 1.55	81.79 ± 1.04	82.04±1.26	63.33±1.11
	DeepCluster (Caron et al., 2018)	97.22±0.55	74.95 ± 0.46	84.82±0.62	82.66±1.00	65.96±0.85
	Patch shuffling (Chen et al., 2019a)	91.93 ± 2.32	75.74 ± 0.51	82.15±3.30	82.82±2.35	52.95±6.92
	Rubiks Cube (Zhuang et al., 2019)	96.24±1.27	72.87 ± 0.16	80.49 ± 4.64	75.59 ± 0.20	62.75±1.93
	Genesis Chest CT (ours)	98.34±0.44	77.62±0.64	87.20±2.87	85.10±2.15	67.96±1.29

¹ NCC	Lung nodule false positive reduction in CT images	
² NCS	Lung nodule segmentation in CT images	
³ ECC	Pulmonary embolism false positive reduction in CT images	
⁴ LCS	Liver segmentation in CT images	
⁵ BMS	Brain tumor segmentation in MR images	

Genesis Chest C7

^{1.} Zhou, Zongwei, et al. "Models genesis: Generic autodidactic models for 3d medical image analysis." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2019.

^{2.} Zhou, Zongwei, et al. "Models Genesis." arXiv preprint arXiv:2004.07882 (2020).

Contribution: Models Genesis reduce annotation efforts by at least 30%

Introduction

Objective

Aim #1

Aim #2

Aim #3

Summary

- ¹NCC Lung nodule false positive reduction in CT images
 ²NCS Lung nodule segmentation in CT images
 ³ECC Pulmonary embolism false positive reduction in CT images
 ⁴LCS Liver segmentation in CT images
 ⁵BMS Brain tumor segmentation in MR images
- 1. Zhou, Zongwei, et al. "Models genesis: Generic autodidactic models for 3d medical image analysis." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2019.

Genesis Chest CT

Target models

2. Zhou, Zongwei, et al. "Models Genesis." arXiv preprint arXiv:2004.07882 (2020).

Proposal: Extend to modality-oriented and organ-oriented models

Introduction

Objective

Aim #1

Aim #2

Aim #3

Holy Grail: effective across diseases, organs, and modalities.

Featured Publications for Aim #3:

- 1. Z. Zhou, V. Sodha, M. M. Rahman Siddiquee, R. Feng, N. Tajbakhsh, M. Gotway, J. Liang, 2019. Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis. MICCAI'19, Young Scientist Award, Best Presentation Award Finalist.
- 2. Z. Zhou, V. Sodha, J. Pang, M. Gotway, J. Liang, 2020. Models Genesis. Medical Image Analysis, MedIA Best Paper Award.

Holy Grail: effective across diseases, organs, and modalities.

Clinical Impacts of Aim #3:

- 1. Transfer learning can greatly reduce the cost and effort required to build a dataset and retrain the model. Instead of building a model from scratch (demanding numerous data acquisition and annotation), a smaller dataset can be used to efficiently fine-tune the existing model.
- 2. Generic pre-trained models can serve as a primary source of transfer learning for many medical imaging applications, leading to accelerated training and improved performance.

Introduction

Objective

Aim #1

Aim #2

Aim #3

Summary

Research goal: Exploit novel methods to minimize the manual labeling efforts for a rapid, precise computer-aided diagnosis system

Aim #1: Acquiring necessary annotation efficiently from human experts

Aim #2: Utilizing existing annotation effectively from advanced architecture

Aim #3: Extracting generic knowledge directly from unannotated images

Acknowledgements

- Jianming Liang, Ph.D.
- Edward H. Shortliffe, M.D., Ph.D.
- Murthy Devarakonda, Ph.D.
- Michael B. Gotway, M.D.

Funding for research program supported by

- NIH R01 (R01HL128785)
- ASU-Mayo Grant
- Mayo Innovation Grant

Annotation-efficient Deep Learning for Computer-aided Diagnosis in Medical Imaging

Zongwei Zhou

Ph.D. Candidate, Biomedical Informatics College of Health Solutions, Arizona State University P: 1-(480)738-2575 | E: zongweiz@asu.edu