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o H-DenseUNet (Li, 2017), Tiramisu (Jégou, 2017)

use dense units in their encoders.
o PSPNet (Zhao, 2017), FusionNet (Quan, 2016) use 

residual units as encoder.
o ResNext (Xie, 2016), Xception (Chollet, 2016) use group 

convolution instead of regular convolution.

The feature extractor is important:
1. Good feature representation.
2. Fast convergence speed.

The drawback of feature extractor:
1. Overfitting on easy tasks.
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o Max vs. Ave vs. L2-norm pooling.
o ALL-CNN (Springenberg, 2015) uses Conv+stride.
o DeepLab (Chen, 2017), PSPNet (Zhao, 2017) apply 

dilated convolutional operation.
o HyperDenseNet (Dolz, 2018) removes the pooling 

layers, only leave successive convolutions.
o Discarding pooling layers has also been found to 

be important in training VAEs or GANs.

The down-sampling is important:
1. Robust against small input variance.
2. Reduce overfitting. 
3. Reduce computation cost.
4. Enlarge receptive field area.

The drawback of down-sampling operation
1. Compress information, invisibility of small objects



Zongwei Zhou et al. UNet++: A Nested U-Net Architecture for Medical Image Segmentation DLMIA 2018

Introduction Related Works UNet++ Results Conclusion

Down-sampling

Up-sampling

Skip connection

	X#,% Convolution

X&,&

X',&

X(,&

X),&

X*,&

X),'

X(,(

X',)

X&,* 𝓛

The up-sampling is important:
1. Recovers lost resolution in down-sampling
2. Guides encoder to select important information

The drawback of up-sampling operation
1. Fails to recover large object boundary accurately

o Up-sampling by repeating
o PixelDCL (Gao, 2017) uses PixelShuffle.
o SegNet (Badrinarayanan, 2016) uses unpooling (indice wise).
o FCN (Long, 2015) and U-Net (Ronneberger, 2015) use 

deconvolution (ConvTranspose + stride)
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The skip connection is important:
1. Fights the vanishing gradient problem.
2. Learns pyramid level features.
3. Recover info loss in down-sampling.

o FCN (Long, 2015) used summation.
o U-Net (Ronneberger, 2015) used concatenation.
o SegNet (Badrinarayanan, 2016) used pooling indice

instead of skip connection.
o Some generators (Johnson 2016) in GAN have NO skip 

connection.
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(Badrinarayanan, 2016) 

(Noh, 2015) 

(Zhao, 2017) 

(Jegou, 2017) 

(Quan, 2016) 

(Milletari, 2016) 

In summary, this encoder-decoder like architecture is very popular.

1. Performs consistently. 

2. Continuous improvements.
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In summary, this encoder-decoder like architecture is very popular.

1. Performs consistently. 

2. Continuous improvements.

However, we still find semantic gap along the skip connections. 
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The novelties of UNet++ architecture
o Redesigned skip pathways
o The use of deep supervision
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Re-design the skip pathways
o In U-Net, the feature maps of the encoder 

are directly received in the decoder.
o In UNet++, they undergo a dense connection whose 

number of convolution layers depends on the pyramid 
level.
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Re-design the skip pathways
o Increase feature fusion.
o Densely connect feature maps.
o We apply concatenation (U-Net-like) instead of 

summation (FCN-like) to allow the subsequent 
layers to re-use intermediate representations.
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The use of deep supervision
o Allow model pruning via speed-accuracy 

trade-off.
o Ensemble multi-depth outputs for better 

accuracy.
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Q: Why UNet++ can be pruned when testing?

Q: How to prune UNet++?

Q: What’s the benefit?
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UNet++ L3

Q: Why UNet++ can be pruned when testing?

Q: How to prune UNet++?

Q: What’s the benefit?

Observation: It is independent
with the remaining parts during 
testing phase, but contributes
during training phase.
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Q: What’s the benefit?

In one second, it segments 

o 260 2D images more,

o 16 3D volumes more.
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Input 𝐗𝟎,𝟎 𝐗𝟎,𝟒𝐗𝟎,𝟑𝐗𝟎,𝟐𝐗𝟎,𝟏 Output Truth

U-Net

IoU: 75.93%
Dice: 89.55%

UNet++
(w/o deep supervision)

UNet++
(w/t deep supervision)

IoU: 88.43%
Dice: 95.60%

IoU: 88.92%
Dice: 95.05%
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Q: Does the benefit come from the increased 
number of parameters? That is, U-Net (7.76M) vs. UNet++ (9.04M)?
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“Wide” U-Net

o Design a wide U-Net with similar 
number of parameters as UNet++, 
where wide U-Net (9.13M) v.s. UNet++ (9.04M).

o This was to ensure that the performance gain 
yielded by UNet++ is not simply due to increased 
number of parameters. 
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encoder / decoder X0,0 / X0,4 X1,0 / X1,3 X2,0 / X2,2 X3,0 / X3,1 X4,0 / X4,0

U-Net [7.76M] 32 64 128 256 512
“Wide” U-Net [9.13M] 35 70 140 280 560

UNet++ [9.04M] 32 64 128 256 512
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Dataset Images Input Size Modality Provider
cell nuclei 670 96×96 microscopy Data Science Bowl 2018

colon polyp 7,379 224×224 RGB video ASU-Mayo
liver 331 512×512 CT MICCAI 2018 LiTS Challenge

lung nodule 1,012 64×64×64 CT LIDC-IDRI

Cell Nuclei Colon Polyp Liver Lung Nodule
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Take Home Messages

o The re-designed skip pathways aim at reducing the semantic gap between 

the feature maps of the encoder and decoder sub-network.

o Deep supervision exposes the model to flexible accuracy-speed trade-off.
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